Self-Concordant Barriers for Convex Approximations of Structured Convex Sets

We show how to approximate the feasible region of structured convex optimization problems by a family of convex sets with explicitly given and efficient (if the accuracy of the approximation is moderate) self-concordant barriers. This approach extends the reach of the modern theory of interior-point methods, and lays the foundation for new ways to treat … Read more

The operator $\Psi$ for the Chromatic Number of a Graph

We investigate hierarchies of semidefinite approximations for the chromatic number $\chi(G)$ of a graph $G$. We introduce an operator $\Psi$ mapping any graph parameter $\beta(G)$, nested between the stability number $\alpha(G)$ and $\chi\left( {\ol G} \right)$, to a new graph parameter $\Psi_\beta(G)$, nested between $\alpha (\ol G)$ and $\chi(G)$; $\Psi_\beta(G)$ is polynomial time computable if … Read more

Computing semidefinite programming lower bounds for the (fractional) chromatic number via block-diagonalization

Recently we investigated in “The operator $\Psi$ for the Chromatic Number of a Graph” hierarchies of semidefinite approximations for the chromatic number $\chi(G)$ of a graph $G$. In particular, we introduced two hierarchies of lower bounds, the `$\psi$’-hierarchy converging to the fractional chromatic number, and the `$\Psi$’-hierarchy converging to the chromatic number of a graph. … Read more

Constraint Nondegeneracy, Strong Regularity and Nonsingularity in Semidefinite Programming

It is known that the Karush-Kuhn-Tucker (KKT) conditions of semidefinite programming can be reformulated as a nonsmooth system via the metric projector over the cone of symmetric and positive semidefinite matrices. We show in this paper that the primal and dual constraint nondegeneracies, the strong regularity, the nonsingularity of the B-subdifferential of this nonsmooth system, … Read more

VSDP: Verified SemiDefinite Programming

VSDP is a MATLAB software package for rigorously solving semidefinite programming problems. It expresses these problems in a notation closely related to the form given in textbooks and scientific papers. Functions for computing verified forward error bounds of the true optimal value and verified certificates of feasibility and infeasibility are provided. All rounding errors due … Read more

Optimal Embeddings of Distance Regular Graphs into Euclidean Spaces

In this paper we give a lower bound for the least distortion embedding of a distance regular graph into Euclidean space. We use the lower bound for finding the least distortion for Hamming graphs, Johnson graphs, and all strongly regular graphs. Our technique involves semidefinite programming and exploiting the algebra structure of the optimization problem … Read more

Primal-dual first-order methods with ${\cal O}(1/\epsilon)$ iteration-complexity for cone programming

In this paper we consider the general cone programming problem, and propose primal-dual convex (smooth and/or nonsmooth) minimization reformulations for it. We then discuss first-order methods suitable for solving these reformulations, namely, Nesterov’s optimal method \cite{Nest83-1,Nest05-1}, Nesterov’s smooth approximation scheme \cite{Nest05-1}, and Nemirovski’s prox-method \cite{Nem05-1}, and propose a variant of Nesterov’s optimal method which has … Read more

Selective Gram-Schmidt orthonormalization for conic cutting surface algorithms

It is not straightforward to find a new feasible solution when several conic constraints are added to a conic optimization problem. Examples of conic constraints include semidefinite constraints and second order cone constraints. In this paper, a method to slightly modify the constraints is proposed. Because of this modification, a simple procedure to generate strictly … Read more

A Unified Theorem on SDP Rank Reduction

We consider the problem of finding a low-rank approximate solution to a system of linear equations in symmetric, positive semidefinite matrices. Specifically, let $A_1,\ldots,A_m \in \R^{n\times n}$ be symmetric, positive semidefinite matrices, and let $b_1,\ldots,b_m \ge 0$. We show that if there exists a symmetric, positive semidefinite matrix $X$ to the system $A_i \bullet X … Read more

A Matrix-lifting Semidefinite Relaxation for the Quadratic Assignment Problem

The quadratic assignment problem (\QAP) is arguably one of the hardest of the NP-hard discrete optimization problems. Problems of dimension greater than 20 are considered to be large scale. Current successful solution techniques depend on branch and bound methods. However, it is difficult to get \emph{strong and inexpensive} bounds. In this paper we introduce a … Read more