Randomized First-order Methods for Saddle Point Optimization

In this paper, we present novel randomized algorithms for solving saddle point problems whose dual feasible region is a direct product of many convex sets. Our algorithms can achieve ${\cal O}(1/N)$ rate of convergence by solving only one dual subproblem at each iteration. Our algorithms can also achieve ${\cal O}(1/N^2)$ rate of convergence if a … Read more

Robust Unit Commitment with Dispatchable Wind: An LP Reformulation of the Second Stage

Abstract— The increasing penetration of uncertain generation such as wind and solar in power systems imposes new challenges to the Unit Commitment (UC) problem, one of the most critical tasks in power systems operations. The two most common approaches to address these challenges — stochastic and robust optimization — have drawbacks that prevent or restrict their … Read more

Dynamic Generation of Scenario Trees

We present new algorithms for the dynamic generation of scenario trees for multistage stochastic optimization. The different methods described are based on random vectors, which are drawn from conditional distributions given the past and on sample trajectories. The structure of the tree is not determined beforehand, but dynamically adapted to meet a distance criterion, which … Read more

Multiperiod Multiproduct Advertising Budgeting: Stochastic Optimization Modeling

We propose a stochastic optimization model for the Multiperiod Multiproduct Advertising Budgeting problem, so that the expected profit of the advertising investment is maximized. The model is a convex optimization problem that can readily be solved by plain use of standard optimization software. It has been tested for planning a realistic advertising campaign. In our … Read more

Symmetric confidence regions and confidence intervals for normal map formulations of stochastic variational inequalities

Stochastic variational inequalities (SVI) model a large class of equilibrium problems subject to data uncertainty, and are closely related to stochastic optimization problems. The SVI solution is usually estimated by a solution to a sample average approximation (SAA) problem. This paper considers the normal map formulation of an SVI, and proposes a method to build … Read more

A Stochastic Quasi-Newton Method for Large-Scale Optimization

Abstract The question of how to incorporate curvature information in stochastic approximation methods is challenging. The direct application of classical quasi- Newton updating techniques for deterministic optimization leads to noisy curvature estimates that have harmful effects on the robustness of the iteration. In this paper, we propose a stochastic quasi-Newton method that is efficient, robust … Read more

Stochastic Block Mirror Descent Methods for Nonsmooth and Stochastic Optimization

In this paper, we present a new stochastic algorithm, namely the stochastic block mirror descent (SBMD) method for solving large-scale nonsmooth and stochastic optimization problems. The basic idea of this algorithm is to incorporate the block-coordinate decomposition and an incremental block averaging scheme into the classic (stochastic) mirror-descent method, in order to significantly reduce the … Read more

Nonmonotone line search methods with variable sample size

Nonmonotone line search methods for unconstrained minimization with the objective functions in the form of mathematical expectation are considered. The objective function is approximated by the sample average approximation (SAA) with a large sample of fixed size. The nonmonotone line search framework is embedded with a variable sample size strategy such that different sample size … Read more

Stochastic optimization and sparse statistical recovery: An optimal algorithm for high dimensions

We develop and analyze stochastic optimization algorithms for problems in which the expected loss is strongly convex, and the optimum is (approximately) sparse. Previous approaches are able to exploit only one of these two structures, yielding an $\order(\pdim/T)$ convergence rate for strongly convex objectives in $\pdim$ dimensions, and an $\order(\sqrt{(\spindex \log \pdim)/T})$ convergence rate when … Read more

Time Consistency Decisions and Temporal Decomposition of Coherent Risk Functionals

It is well known that most risk measures (risk functionals) are time inconsistent in the following sense: It may happen that today some loss distribution appears to be less risky than another, but looking at the conditional distribution at a later time, the opposite relation holds. In this article we demonstrate that this time inconsistency … Read more