SLiSeS: Subsampled Line Search Spectral Gradient Method for Finite Sums
CitationSLiSesArticleDownload View PDF
CitationSLiSesArticleDownload View PDF
Convex and nonconvex finite-sum minimization arises in many scientific computing and machine learning applications. Recently, first-order and second-order methods where objective functions, gradients and Hessians are approximated by randomly sampling components of the sum have received great attention. We propose a new trust-region method which employs suitable approximations of the objective function, gradient and Hessian … Read more
Sketching, a dimensionality reduction technique, has received much attention in the statistics community. In this paper, we study sketching in the context of Newton’s method for solving finite-sum optimization problems in which the number of variables and data points are both large. We study two forms of sketching that perform dimensionality reduction in data space: … Read more
The paper studies the solution of stochastic optimization problems in which approximations to the gradient and Hessian are obtained through subsampling. We first consider Newton-like methods that employ these approximations and discuss how to coordinate the accuracy in the gradient and Hessian to yield a superlinear rate of convergence in expectation. The second part of … Read more