Perturbation resilience and superiorization of iterative algorithms

Iterative algorithms aimed at solving some problems are discussed. For certain problems, such as finding a common point in the intersection of a finite number of convex sets, there often exist iterative algorithms that impose very little demand on computer resources. For other problems, such as finding that point in the intersection at which the … Read more

On Equivalence of Semidefinite Relaxations for Quadratic Matrix Programming

In this paper, we analyze two popular semidefinite programming \SDPb relaxations for quadratically constrained quadratic programs \QCQPb with matrix variables. These are based on \emph{vector-lifting} and on \emph{matrix lifting} and are of different size and expense. We prove, under mild assumptions, that these two relaxations provide equivalent bounds. Thus, our results provide a theoretical guideline … Read more

Risk Adjusted Budget Allocation Models with Application in Homeland Security

This paper presents and studies several models for multi-criterion budget allocation problems under uncertainty. We start by introducing a robust weighted objective model, which is developed further using the concept of stochastic dominance to incorporate risk averseness of the decision maker. A budget minimization variant of this model is also presented. We use a Sample … Read more

Achieving Higher Frequencies in Large-Scale Nonlinear Model Predictive Control

We present new insights into how to achieve higher frequencies in large-scale nonlinear predictive control using truncated-like schemes. The basic idea is that, instead of solving the full nonlinear programming (NLP) problem at each sampling time, we solve a single, truncated quadratic programming (QP) problem. We present conditions guaranteeing stability of the approximation error derived … Read more

Single-Leg Airline Revenue Management with Overbooking

Airline revenue management is about identifying the maximum revenue seat allocation policies. Since a major loss in revenue results from cancellations and no-show passengers, over the years overbooking has received a significant attention in the literature. In this study, we propose new models for static and dynamic single-leg overbooking problems. In the static case, we … Read more

Mathematical Programming Approaches for Generating p-Efficient Points

Probabilistically constrained problems, in which the random variables are finitely distributed, are non-convex in general and hard to solve. The p-efficiency concept has been widely used to develop efficient methods to solve such problems. Those methods require the generation of p-efficient points (pLEPs) and use an enumeration scheme to identify pLEPs. In this paper, we … Read more

Convexity Conditions and the Legendre-Fenchel Transform for the Product of Finitely Many Positive Definite Quadratic Forms

While the product of finitely many convex functions has been investigated in the field of global optimization, some fundamental issues such as the convexity condition and the Legendre-Fenchel transform for the product function remain unresolved. Focusing on quadratic forms, this paper is aimed at addressing the question: \emph{When is the product of finitely many positive … Read more

On EOQ Cost Models with Arbitrary Purchase and Transportation Costs

We analyze an economic order quantity cost model with unit out-of-pocket holding costs, unit opportunity costs of holding, fixed ordering costs, and general purchase-transportation costs. We identify the set of purchase-transportation cost functions for which this model is easy to solve and related to solving a one-dimensional convex minimization problem. For the remaining purchase-transportation cost … Read more

Small bipartite subgraph polytopes

We compute a complete linear description of the bipartite subgraph polytope, for up to seven nodes, and a conjectured complete description for eight nodes. We then show how these descriptions were used to compute the integrality ratio of various relaxations of the max-cut problem, again for up to eight nodes. Citation L. Galli & A.N. … Read more

Convergence and Descent Properties for a Class of Multilevel Optimization Algorithms

I present a multilevel optimization approach (termed MG/Opt) for the solution of constrained optimization problems. The approach assumes that one has a hierarchy of models, ordered from fine to coarse, of an underlying optimization problem, and that one is interested in finding solutions at the finest level of detail. In this hierarchy of models calculations … Read more