Tolerances

Many different tolerances are used in mathematical programming systems. They are not used in the same way, and tolerances are related to each other. This Mathematical Programming Glossary Supplement presents the main concepts with specifics for some MPS’s and examples to illustrate caution. Citation Available as Mathematical Programming Glossary Supplement, 2003, at http://glossary.computing.society.informs.org/ Article Download … Read more

Sensitivity analysis for relaxed optimal control problems with final-state constraints

In this article, we compute a second-order expansion of the value function of a family of relaxed optimal control problems with final-state constraints, parameterized by a perturbation variable. The sensitivity analysis is performed for controls that we call R-strong solutions. They are optimal solutions with respect to the set of feasible controls with a uniform … Read more

Polytopes of Minimum Positive Semidefinite Rank

The positive semidefinite (psd) rank of a polytope is the smallest $k$ for which the cone of $k \times k$ real symmetric psd matrices admits an affine slice that projects onto the polytope. In this paper we show that the psd rank of a polytope is at least the dimension of the polytope plus one, … Read more

Analytical formulas for calculating extremal ranks and inertias of quadratic matrix-valued functions

group of analytical formulas formulas for calculating the global maximal and minimal ranks and inertias of the quadratic matrix-valued function $$ \phi(X) = \left(\, AXB + C\,\right)\!M\!\left(\, AXB + C \right)^{*} + D $$ are established and their consequences are presented, where $A$, $B$, $C$ and $D$ are given complex matrices with $A$ and $C$ … Read more

Time Consistency Decisions and Temporal Decomposition of Coherent Risk Functionals

It is well known that most risk measures (risk functionals) are time inconsistent in the following sense: It may happen that today some loss distribution appears to be less risky than another, but looking at the conditional distribution at a later time, the opposite relation holds. In this article we demonstrate that this time inconsistency … Read more

Continuous Dynamic Constrained Optimisation – The Challenges

Many real-world dynamic problems have constraints, and in certain cases not only the objective function changes over time, but also the constraints. However, there is no research in answering the question of whether current algorithms work well on continuous dynamic constrained optimisation problems (DCOPs), nor is there any benchmark problem that reflects the common characteristics … Read more

Evolutionary Dynamic Optimization: A Survey of the State of the Art

Optimization in dynamic environments is a challenging but important task since many real-world optimization problems are changing over time. Evolutionary computation and swarm intelligence are good tools to address optimization problems in dynamic environments due to their inspiration from natural self-organized systems and biological evolution, which have always been subject to changing environments. Evolutionary optimization … Read more

Optimal synthesis in the Reeds and Shepp problem with a onesided variation of velocity

We consider a time-optimal problem for the Reeds and Shepp model describing a moving point on a plane, with a onesided variation of the speed and a free final direction of velocity. Using Pontryagin Maximum Principle, we obtain all possible types of extremals and, analyzing them and discarding nonoptimal ones, construct the optimal synthesis. Citation … Read more

Bilevel optimization problems with vectorvalued objective functions in both levels

Bilevel optimization problems with multivalued objective functions in both levels are first replaced by a problem with a parametric lower level using a convex combination of the lower level objectives. Thus a nonconvex multiobjective bilevel optimization problem arises which is then transformed into a parametric bilevel programming problem. The investigated problem has been considered in … Read more

A discrete L-curve for the regularization of ill-posed inverse problems

In many applications, the discretization of continuous ill-posed inverse problems results in discrete ill-posed problems whose solution requires the use of regularization strategies. The L-curve criterium is a popular tool for choosing good regularized solutions, when the data noise norm is not a priori known. In this work, we propose replacing the original ill-posed inverse … Read more