Optimization of Demand Response Through Peak Shaving

We consider a model in which a consumer of a resource over several periods must pay a per unit charge for the resource as well as a peak charge. The consumer has the ability to reduce his consumption in any period at some given cost, subject to a constraint on the total amount of reduction … Read more

A branch and cut algorithm for minimum spanning trees under conflict constraints

We study approaches for the exact solution of the \NP–hard minimum spanning tree problem under conflict constraints. Given a graph $G(V,E)$ and a set $C \subset E \times E$ of conflicting edge pairs, the problem consists of finding a conflict-free minimum spanning tree, i.e. feasible solutions are allowed to include at most one of the … Read more

A Generalized Proximal Point Algorithm and its Convergence Rate

We propose a generalized proximal point algorithm (PPA), in the generic setting of finding a zero point of a maximal monotone operator. In addition to the classical PPA, a number of benchmark operator splitting methods in PDE and optimization literatures such as the Douglas-Rachford splitting method, Peaceman-Rachford splitting method, alternating direction method of multipliers, generalized … Read more

A Parallel Bundle Framework for Asynchronous Subspace Optimisation of Nonsmooth Convex Functions

An algorithmic framework is presented for optimising general convex functions by non synchronised parallel processes. Each process greedily picks a suitable adaptive subset of coordinates and runs a bundle method on a corresponding restricted problem stopping whenever a descent step is encountered or predicted decrease is reduced sufficiently. No prior knowledge on the dependencies between … Read more

An approximation scheme for a class of risk-averse stochastic equilibrium problems

We consider two models for stochastic equilibrium: one based on the variational equilibrium of a generalized Nash game, and the other on the mixed complementarity formulation. Each agent in the market solves a one-stage risk-averse optimization problem with both here-and-now (investment) variables and (production) wait-and-see variables. A shared constraint couples almost surely the wait-and-see decisions … Read more

New Analysis and Results for the Conditional Gradient Method

We present new results for the conditional gradient method (also known as the Frank-Wolfe method). We derive computational guarantees for arbitrary step-size sequences, which are then applied to various step-size rules, including simple averaging and constant step-sizes. We also develop step-size rules and computational guarantees that depend naturally on the warm-start quality of the initial … Read more