Inverse Parametric Optimization with an Application to Hybrid System Control

We present a number of results on inverse parametric optimization and its application to hybrid system control. We show that any function that can be written as the difference of two convex functions can also be written as a linear mapping of the solution to a convex parametric optimization problem. We exploit these results in … Read more

A New Framework for Combining Global and Local Methods in Black Box Optimization

We propose a new framework for the optimization of computationally expensive black box problems, where neither closed-form expressions nor derivatives of the objective functions are available. The proposed framework consists of two procedures. The first constructs a global metamodel to approximate the underlying black box function and explores an unvisited area to search for a … Read more

Improving the LP bound of a MILP by dual concurrent branching and the relationship to cut generation methods

In this paper branching for attacking MILP is investigated. Under certain circumstances branches can be done concurrently. By introducing a new calculus it is shown there are restrictions for dual values. As a second result of this study a new class of cuts for MILP is found, which are defined by those values. This class … Read more

A direct splitting method for nonsmooth variational inequalities

We propose a direct splitting method for solving nonsmooth variational inequality problems in Hilbert spaces. The weak convergence is established, when the operator is the sum of two point-to-set and monotone operators. The proposed method is a natural extension of the incremental subgradient method for nondifferentiable optimization, which explores strongly the structure of the operator … Read more

A fix-and-relax heuristic for controlled tabular adjustment

Controlled tabular adjustment (CTA) is an emerging protection technique for tabular data protection. CTA formulates a mixed integer linear programming problem, which is tough for tables of moderate size. Finding a feasible initial solution may even be a challenging task for large instances. On the other hand, end users of tabular data protection techniques give … Read more

Temporal vs. Stochastic Granularity in Thermal Generation Capacity Planning with Wind Power

We propose a stochastic generation expansion model, where we represent the long-term uncertainty in the availability and variability in the weekly wind pattern with multiple scenarios. Scenario reduction is conducted to select a representative set of scenarios for the long-term wind power uncertainty. We assume that the short-term wind forecast error induces an additional amount … Read more

A comparison of routing sets for robust network design

Designing a network able to route a set of non-simultaneous demand vectors is an important problem arising in telecommunications. In this paper, we compare the optimal capacity allocation costs for six routing sets: affine routing, volume routing and its two simplifications, the routing based on an unrestricted 2-cover of the uncertainty set, and the routing … Read more

Analysis of Copositive Optimization Based Linear Programming Bounds on Standard Quadratic Optimization

The problem of minimizing a quadratic form over the unit simplex, referred to as a standard quadratic optimization problem, admits an exact reformulation as a linear optimization problem over the convex cone of completely positive matrices. This computationally intractable cone can be approximated from the inside and from the outside by two sequences of nested … Read more

Nonsmooth Algorithms and Nesterov’s Smoothing Techniques for Generalized Fermat-Torricelli Problems

In this paper we present some algorithms for solving a number of new models of facility location involving sets which generalize the classical Fermat-Torricelli problem. Our approach uses subgradient-type algorithms to cope with nondi erentiabilty of the distance functions therein. Another approach involves approximating nonsmooth optimization problems by smooth optimizations problems using Nesterov’s smoothing techniques. Convergence … Read more

Stochastic linear programming games with concave preferences

We study stochastic linear programming games: a class of stochastic cooperative games whose payoffs under any realization of uncertainty are determined by a specially structured linear program. These games can model a variety of settings, including inventory centralization and cooperative network fortification. We focus on the core of these games under an allocation scheme that … Read more