Near-optimal analysis of univariate moment bounds for polynomial optimization

We consider a recent hierarchy of upper approximations proposed by Lasserre (arXiv:1907.097784, 2019) for the minimization of a polynomial f over a compact set K⊆ℝn. This hierarchy relies on using the push-forward measure of the Lebesgue measure on K by the polynomial f and involves univariate sums of squares of polynomials with growing degrees 2r. … Read more

Exact and Heuristic Algorithms for the Carrier-Vehicle Traveling Salesman Problem

This paper presents new structural properties for the Carrier-Vehicle Traveling Salesman Problem. The authors provide a new mixed integer second order conic optimization formulation, with associated optimality cuts based on the structural properties, and an Iterated Local Search (ILS) algorithm. Computational experiments on instances from the literature demonstrate the superiority of the new formulation to … Read more

Solving non-monotone equilibrium problems via a DIRECT-type approach

A global optimization approach for solving non-monotone equilibrium problems (EPs) is proposed. The class of (regularized) gap functions is used to reformulate any EP as a constrained global optimization program and some bounds on the Lipschitz constant of such functions are provided. The proposed global optimization approach is a combination of an improved version of … Read more

Multistage Distributionally Robust Mixed-Integer Programming with Decision-Dependent Moment-Based Ambiguity Sets

We study multistage distributionally robust mixed-integer programs under endogenous uncertainty, where the probability distribution of stage-wise uncertainty depends on the decisions made in previous stages. We first consider two ambiguity sets defined by decision-dependent bounds on the first and second moments of uncertain parameters and by mean and covariance matrix that exactly match decision-dependent empirical … Read more

Distributionally Robust Bottleneck Combinatorial Problems: Uncertainty Quantification and Robust Decision Making

In a bottleneck combinatorial problem, the objective is to minimize the highest cost of elements of a subset selected from the combinatorial solution space. This paper studies data-driven distributionally robust bottleneck combinatorial problems (DRBCP) with stochastic costs, where the probability distribution of the cost vector is contained in a ball of distributions centered at the … Read more

An Outer-approximation Guided Optimization Approach for Constrained Neural Network Inverse Problems

This paper discusses an outer-approximation guided optimization method for constrained neural network inverse problems with rectified linear units. The constrained neural network inverse problems refer to an optimization problem to find the best set of input values of a given trained neural network in order to produce a predefined desired output in presence of constraints … Read more

Orthogonal projection algorithm for projecting onto a fnitely generated cone

In this paper, an algorithm is proposed to find the nearest point of a convex cone to a given vector, which is composed of a series of orthogonal projections. Some properties of this algorithm, including the reasonability of implementation, the global convergence property and the finite termination, etc., are obtained. The proposed algorithm is more … Read more

Robust Active Preference Elicitation

We study the problem of strategically eliciting the preferences of a decision-maker through a moderate number of pairwise comparison queries with the goal of making them a high quality recommendation for a specific decision-making problem. We are particularly motivated by applications in high stakes domains, such as when choosing a policy for allocating scarce resources … Read more

Optimization-Based Dispatching Policies for Open-Pit Mining

We propose, implement, and test two approaches for dispatching trucks in an open-pit mining operation. The first approach relies on a nonlinear optimization model that incorporates queueing effects to set target average flow rates between mine locations. The second approach is based on a time-discretized mixed integer programming (MIP) model. The MIP model is difficult … Read more

On Standard Quadratic Programs with Exact and Inexact Doubly Nonnegative Relaxations

The problem of minimizing a (nonconvex) quadratic form over the unit simplex, referred to as a standard quadratic program, admits an exact convex conic formulation over the computationally intractable cone of completely positive matrices. Replacing the intractable cone in this formulation by the larger but tractable cone of doubly nonnegative matrices, i.e., the cone of … Read more