Rank-one Boolean tensor factorization and the multilinear polytope

We consider the NP-hard problem of approximating a tensor with binary entries by a rank-one tensor, referred to as rank-one Boolean tensor factorization problem. We formulate this problem, in an extended space of variables, as the problem of minimizing a linear function over a highly structured multilinear set. Leveraging on our prior results regarding the … Read more

Efficient Joint Object Matching via Linear Programming

Joint object matching, also known as multi-image matching, namely, the problem of finding consistent partial maps among all pairs of objects within a collection, is a crucial task in many areas of computer vision. This problem subsumes bipartite graph matching and graph partitioning as special cases and is NP-hard, in general. We develop scalable linear … Read more

The ratio-cut polytope and K-means clustering

We introduce the ratio-cut polytope defined as the convex hull of ratio-cut vectors corresponding to all partitions of $n$ points in $\R^m$ into at most $K$ clusters. This polytope is closely related to the convex hull of the feasible region of a number of clustering problems such as K-means clustering and spectral clustering. We study … Read more

Linear Programming and Community Detection

The problem of community detection with two equal-sized communities is closely related to the minimum graph bisection problem over certain random graph models. In the stochastic block model distribution over networks with community structure, a well-known semidefinite programming (SDP) relaxation of the minimum bisection problem recovers the underlying communities whenever possible. Motivated by their superior … Read more

On the impact of running intersection inequalities for globally solving polynomial optimization problems

We consider global optimization of nonconvex problems whose factorable reformulations contain a collection of multilinear equations. Important special cases include multilinear and polynomial optimization problems. The multilinear polytope is the convex hull of a set of binary points satisfying a number of multilinear equations. Running intersection inequalities are a family of facet-defining inequalities for the … Read more

On decomposability of the multilinear polytope and its implications in mixed-integer nonlinear optimization

In this article, we provide an overview of some of our recent results on the facial structure of the multilinear polytope with a special focus on its decomposability properties. Namely, we demonstrate that, in the context of mixed-integer nonlinear optimization, the decomposability of the multilinear polytope plays a key role from both theoretical and algorithmic … Read more

The running intersection relaxation of the multilinear polytope

The multilinear polytope MP_G of a hypergraph G is the convex hull of a set of binary points satisfying a collection of multilinear equations. We introduce the running-intersection inequalities, a new class of facet-defining inequalities for the multilinear polytope. Accordingly, we define a new polyhedral relaxation of MP_G referred to as the running-intersection relaxation and … Read more

Packing circles in a square: a theoretical comparison of various convexification techniques

We consider the problem of packing congruent circles with the maximum radius in a unit square. As a mathematical program, this problem is a notoriously difficult nonconvex quadratically constrained optimization problem which possesses a large number of local optima. We study several convexification techniques for the circle packing problem, including polyhedral and semi-definite relaxations and … Read more

The Multilinear polytope for acyclic hypergraphs

We consider the Multilinear polytope defined as the convex hull of the set of binary points satisfying a collection of multilinear equations. Such sets are of fundamental importance in many types of mixed-integer nonlinear optimization problems, such as binary polynomial optimization. Utilizing an equivalent hypergraph representation, we study the facial structure of the Multilinear polytope … Read more

On Decomposability of Multilinear Sets

In this paper, we consider the Multilinear set defined as the set of binary points satisfying a collection of multilinear equations. Such sets appear in factorable reformulations of many types of nonconvex optimization problems, including binary polynomial optimization. A great simplification in studying the facial structure of the convex hull of the Multilinear set is … Read more