Improving the global convergence of Inexact Restoration methods for constrained optimization problems

Inexact restoration (IR) methods are an important family of numerical methods for solving constrained optimization problems, with applications to electronic structures and bilevel programming, among others areas. In these methods, the minimization is separated into two phases: decreasing infeasibility (feasibility phase) and improving solution (optimality phase). The feasibility phase does not require the generated points … Read more

Global Convergence of Algorithms Under Constant Rank Conditions for Nonlinear Second-Order Cone Programming

In [R. Andreani, G. Haeser, L. M. Mito, H. Ramírez C., Weak notions of nondegeneracy in nonlinear semidefinite programming, arXiv:2012.14810, 2020] the classical notion of nondegeneracy (or transversality) and Robinson’s constraint qualification have been revisited in the context of nonlinear semidefinite programming exploiting the structure of the problem, namely, its eigendecomposition. This allows formulating the … Read more

An extended delayed weighted gradient algorithm for solving strongly convex optimization problems

The recently developed delayed weighted gradient method (DWGM) is competitive with the well-known conjugate gradient (CG) method for the minimization of strictly convex quadratic functions. As well as the CG method, DWGM has some key optimality and orthogonality properties that justify its practical performance. The main difference with the CG method is that, instead of … Read more

First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition

The well known constant rank constraint qualification [Math. Program. Study 21:110–126, 1984] introduced by Janin for nonlinear programming has been recently extended to a conic context by exploiting the eigenvector structure of the problem. In this paper we propose a more general and geometric approach for defining a new extension of this condition to the … Read more

Sequential constant rank constraint qualifications for nonlinear semidefinite programming with applications

We present new constraint qualification conditions for nonlinear semidefinite programming that extend some of the constant rank-type conditions from nonlinear programming. As an application of these conditions, we provide a unified global convergence proof of a class of algorithms to stationary points without assuming neither uniqueness of the Lagrange multiplier nor boundedness of the Lagrange … Read more

Convergence of Quasi-Newton Methods for Solving Constrained Generalized Equations

In this paper, we focus on quasi-Newton methods to solve constrained generalized equations. As is well-known, this problem was firstly studied by Robinson and Josephy in the 70’s. Since then, it has been extensively studied by many other researchers, specially Dontchev and Rockafellar. Here, we propose two Broyden-type quasi-Newton approaches to dealing with constrained generalized … Read more

Weak notions of nondegeneracy in nonlinear semidefinite programming

The constraint nondegeneracy condition is one of the most relevant and useful constraint qualifications in nonlinear semidefinite programming. It can be characterized in terms of any fixed orthonormal basis of the, let us say, $\ell$-dimensional kernel of the constraint matrix, by the linear independence of a set of $\ell(\ell+1)/2$ derivative vectors. We show that this … Read more

On complexity and convergence of high-order coordinate descent algorithms

Coordinate descent methods with high-order regularized models for box-constrained minimization are introduced. High-order stationarity asymptotic convergence and first-order stationarity worst-case evaluation complexity bounds are established. The computer work that is necessary for obtaining first-order $\varepsilon$-stationarity with respect to the variables of each coordinate-descent block is $O(\varepsilon^{-(p+1)/p})$ whereas the computer work for getting first-order $\varepsilon$-stationarity with … Read more

A family of optimal weighted conjugate-gradient-type methods for strictly convex quadratic minimization

We introduce a family of weighted conjugate-gradient-type methods, for strictly convex quadratic functions, whose parameters are determined by a minimization model based on a convex combination of the objective function and its gradient norm. This family includes the classical linear conjugate gradient method and the recently published delayed weighted gradient method as the extreme cases … Read more

Using first-order information in Direct Multisearch for multiobjective optimization

Derivatives are an important tool for single-objective optimization. In fact, it is commonly accepted that derivative-based methods present a better performance than derivative-free optimization approaches. In this work, we will show that the same does not apply to multiobjective derivative-based optimization, when the goal is to compute an approximation to the complete Pareto front of … Read more