A study of the relation between the single-row and the double-row facility layout problem

The NP-hard Multi-Row Facility Layout Problem (MRFLP) consists of a set of one-dimensional departments and pairwise transport weights between them. It asks for a non-overlapping arrangement of the departments along a given number of rows such that the weighted sum of the horizontal center-to-center distances between the departments is minimized. We mainly focus on the … Read more

New exact approaches for the combined cell layout problem and extensions of the multi-bay facility layout problem

In this paper we consider the Combined Cell Layout Problem (CCLP), the Multi-Bay Facility Layout Problem (MBFLP) and several generalizations of the MBFLP, which have wide applications, e.g., in factory planning, heavy manufacturing, semiconductor fabrication and arranging rooms in hospitals. Given a set of cells of type single-row or directed-circular and a set of one-dimensional … Read more

Decorous Combinatorial Lower Bounds for Row Layout Problems

In this paper we consider the Double-Row Facility Layout Problem (DRFLP). Given a set of departments and pairwise transport weights between them the DRFLP asks for a non-overlapping arrangement of the departments along both sides of a common path such that the weighted sum of the center-to-center distances between the departments is minimized. Despite its … Read more

Matroid Optimization Problems with Monotone Monomials in the Objective

In this paper we investigate non-linear matroid optimization problems with polynomial objective functions where the monomials satisfy certain monotonicity properties. Indeed, we study problems where the set of non-linear monomials consists of all non-linear monomials that can be built from a given subset of the variables. Linearizing all non-linear monomials we study the respective polytope. … Read more

The Traveling Salesperson Problem with Forbidden Neighborhoods on Regular 3D Grids

We study the traveling salesperson problem with forbidden neighborhoods (TSPFN) on regular three-dimensional grids. The TSPFN asks for a shortest tour over all grid points such that successive points along a tour have at least some given distance. We present optimal solutions and explicit construction schemes for the Euclidean TSP and the TSPFN where edges … Read more

Closed Almost Knight’s Tours on 2D and 3D Chessboards

Let a (generalized) chessboard in two or three dimensions be given. A closed knight’s tour is defined as a Hamiltonian cycle over all cells of the chessboard where all moves are knight’s moves, i.,e. have length 5^0.5. It is well-characterized for which chessboard sizes it is not possible to construct a closed knight’s tour. On … Read more

The Traveling Salesman Problem on Grids with Forbidden Neighborhoods

We introduce the Traveling Salesman Problem with forbidden neighborhoods (TSPFN). This is an extension of the Euclidean TSP in the plane where direct connections between points that are too close are forbidden. The TSPFN is motivated by an application in laser beam melting. In the production of a workpiece in several layers using this method … Read more

Matroid Optimisation Problems with Nested Non-linear Monomials in the Objective Function

Recently, Buchheim and Klein suggested to study polynomial-time solvable optimisation problems with linear objective functions combined with exactly one additional quadratic monomial. They concentrated on special quadratic spanning tree or forest problems. We extend their results to general matroid optimisation problems with a set of nested monomials in the objective function. The monomials are linearised … Read more

Minimization and Maximization Versions of the Quadratic Traveling Salesman Problem

The traveling salesman problem (TSP) asks for a shortest tour through all vertices of a graph with respect to the weights of the edges. The symmetric quadratic traveling salesman problem (SQTSP) associates a weight with every three vertices traversed in succession. If these weights correspond to the turning angles of the tour, we speak of … Read more

New Exact Approaches to Row Layout Problems

Given a set of departments, a number of rows and pairwise connectivities between these departments, the multi-row facility layout problem (MRFLP) looks for a non-overlapping arrangement of these departments in the rows such that the weighted sum of the center-to-center distances is minimized. As even small instances of the (MRFLP) are rather challenging, several special … Read more