Bilevel optimization: theory, algorithms and applications

Bilevel optimization problems are hierarchical optimization problems where the feasible region of the so-called upper level problem is restricted by the graph of the solution set mapping of the lower level problem. Aim of this article is to collect a large number of references on this topic, to show the diversity of contributions and to … Read more

A Critical Survey on the Network Optimization Algorithms for Evacuation Planning Problems

In the last decades, research on emergency traffic management has received high attention from the operations research community and many pioneer researchers have established it as one of the most fertile research areas. We consider the computationally hard flows over time problems from wider perspective including flow/time dependent attributes (dynamic flows), a possibility of flows … Read more

Efficient Algorithms for Flow over Time Evacuation Planning Problems with Lane Reversal Strategy

The contraflow techniques have widely been effective in evacuation planning research. We present effcient algorithms to solve the evacuation network flow problems, namely, the maximum, earliest arrival, quickest and lex-maximum dynamic contraflow problems having constant attributes and their generalizations with partial contraflow recon guration. Moreover, the contraflow models with inflow dependent and load dependent transit times … Read more

Two-level value function approach to nonsmooth optimistic and pessimistic bilevel programs

The authors’ paper in Ref. [5], was the first one to provide detailed optimality conditions for pessimistic bilevel optimization. The results there were based on the concept of the two-level optimal value function introduced and analyzed in Ref. [4], for the case of optimistic bilevel programs. One of the basic assumptions in both of these … Read more

Pessimistic bilevel linear optimization

In this paper, we investigate the pessimistic bilevel linear optimization problem (PBLOP). Based on the lower level optimal value function and duality, the PBLOP can be transformed to a single-level while nonconvex and nonsmooth optimization problem. By use of linear optimization duality, we obtain a tractable and equivalent transformation and propose algorithms for computing global … Read more

On the effects of combining objectives in multi-objective optimization

In multi-objective optimization, one considers optimization problems with more than one objective function, and in general these objectives conflict each other. As the solution set of a multiobjective problem is often rather large and contains points of no interest to the decision-maker, strategies are sought that reduce the size of the solution set. One such … Read more

KKT Reformulation and Necessary Conditions for Optimality in Nonsmooth Bilevel Optimization

For a long time, the bilevel programming problem has essentially been considered as a special case of mathematical programs with equilibrium constraints (MPECs), in particular when the so-called KKT reformulation is in question. Recently though, this widespread believe was shown to be false in general. In this paper, other aspects of the difference between both … Read more

Bilevel optimization problems with vectorvalued objective functions in both levels

Bilevel optimization problems with multivalued objective functions in both levels are first replaced by a problem with a parametric lower level using a convex combination of the lower level objectives. Thus a nonconvex multiobjective bilevel optimization problem arises which is then transformed into a parametric bilevel programming problem. The investigated problem has been considered in … Read more

Necessary optimality conditions in pessimistic bilevel programming

This paper is devoted to the so-called pessimistic version of bilevel programming programs. Minimization problems of this type are challenging to handle partly because the corresponding value functions are often merely upper (while not lower) semicontinuous. Employing advanced tools of variational analysis and generalized differentiation, we provide rather general frameworks ensuring the Lipschitz continuity of … Read more

Sensitivity analysis for two-level value functions with applications to bilevel programming

This paper contributes to a deeper understanding of the link between a now conventional framework in hierarchical optimization spread under the name of the optimistic bilevel problem and its initial more dicult formulation that we call here the original optimistic bilevel optimization problem. It follows from this research that, although the process of deriving necessary … Read more