Reduction of symmetric semidefinite programs using the regular *-representation

We consider semidefinite programming problems on which a permutation group is acting. We describe a general technique to reduce the size of such problems, exploiting the symmetry. The technique is based on a low-order matrix *-representation of the commutant (centralizer ring) of the matrix algebra generated by the permutation matrices. We apply it to extending … Read more

A linear programming reformulation of the standard quadratic optimization problem

The problem of minimizing a quadratic form over the standard simplex is known as the standard quadratic optimization problem (SQO). It is NP-hard, and contains the maximum stable set problem in graphs as a special case. In this note we show that the SQO problem may be reformulated as an (exponentially sized) linear program. Citation … Read more

A PTAS for the minimization of polynomials of fixed degree over the simplex

We consider the problem of computing the minimum value $p_{\min}$ taken by a polynomial $p(x)$ of degree $d$ over the standard simplex $\Delta$. This is an NP-hard problem already for degree $d=2$. For any integer $k\ge 1$, by minimizing $p(x)$ over the set of rational points in $\Delta$ with denominator $k$, one obtains a hierarchy … Read more

Global optimization of rational functions: a semidefinite programming approach

We consider the problem of global minimization of rational functions on $\LR^n$ (unconstrained case), and on an open, connected, semi-algebraic subset of $\LR^n$, or the (partial) closure of such a set (constrained case). We show that in the univariate case ($n=1$), these problems have exact reformulations as semidefinite programming (SDP) problems, by using reformulations introduced … Read more

Limiting behavior of the central path in semidefinite optimization

It was recently shown that, unlike in linear optimization, the central path in semidefinite optimization (SDO) does not converge to the analytic center of the optimal set in general. In this paper we analyze the limiting behavior of the central path to explain this unexpected phenomenon. This is done by deriving a new necessary and … Read more

Products of positive forms, linear matrix inequalities, and Hilbert 17-th problem for ternary forms

A form p on R^n (homogeneous n-variate polynomial) is called positive semidefinite (psd) if it is nonnegative on R^n. In other words, the zero vector is a global minimizer of p in this case. The famous 17th conjecture of Hilbert (later proven by Artin) is that a form p is psd if and only if … Read more

On the convergence of the central path in semidefinite optimization

The central path in linear optimization always converges to the analytic center of the optimal set. This result was extended to semidefinite programming by Goldfarb and Scheinberg (SIAM J. Optim. 8: 871-886, 1998). In this paper we show that this latter result is not correct in the absence of strict complementarity. We provide a counterexample, … Read more

Solving standard quadratic optimization problems via linear, semidefinite and copositive programming

The problem of minimizing a (non-convex) quadratic function over the simplex (the standard quadratic optimization problem) has an exact convex reformulation as a copositive programming problem. In this paper we show how to approximate the optimal solution by approximating the cone of copositive matrices via systems of linear inequalities, and, more refined, linear matrix inequalities … Read more

A scaled Gauss-Newton Primal–Dual Search Direction for Semidefinite Optimization

Interior point methods for semidefinite optimization (SDO) have recently been studied intensively, due to their polynomial complexity and practical efficiency. Most of these methods are extensions of linear optimization (LO) algorithms. Unlike in the LO case, there are several different ways of constructing primal-dual search directions in SDO. The usual scheme is to apply linearization … Read more