Exploiting special structure in semidefinite programming: a survey of theory and applications

Semidefinite Programming (SDP) may be seen as a generalization of Linear Programming (LP). In particular, one may extend interior point algorithms for LP to SDP, but it has proven much more difficult to exploit structure in the SDP data during computation. We survey three types of special structure in SDP data: 1) a common `chordal’ … Read more

A new library of structured semidefinite programming instances

Solvers for semidefinite programming (SDP) have evolved a great deal in the last decade, and their development continues. In order to further support and encourage this development, we present a new test set of SDP instances. These instances arise from recent applications of SDP in coding theory, computational geometry, graph theory and structural design. Most … Read more

Parallel implementation of a semidefinite programming solver based on CSDP on a distributed memory cluster

In this paper we present the algorithmic framework and practical aspects of implementing a parallel version of a primal-dual semidefinite programming solver on a distributed memory computer cluster. Our implementation is based on the CSDP solver and uses a message passing interface (MPI), and the ScaLAPACK library. A new feature is implemented to deal with … Read more

On semidefinite programming relaxations of the traveling salesman problem

We consider a new semidefinite programming (SDP) relaxation of the symmetric traveling salesman problem (TSP), obtained via an SDP relaxation of the more general quadratic assignment problem (QAP). We show that the new relaxation dominates the one in the paper: [D. Cvetkovic, M. Cangalovic and V. Kovacevic-Vucic. Semidefinite Programming Methods for the Symmetric Traveling Salesman … Read more

Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem

We consider semidefinite programming relaxations of the quadratic assignment problem, and show how to exploit group symmetry in the problem data. Thus we are able to compute the best known lower bounds for several instances of quadratic assignment problems from the problem library: [R.E. Burkard, S.E. Karisch, F. Rendl. QAPLIB – a quadratic assignment problem … Read more

Exploiting group symmetry in truss topology optimization

We consider semidefinite programming (SDP) formulations of certain truss topology optimization problems, where a lower bound is imposed on the fundamental frequency of vibration of the truss structure. These SDP formulations were introduced in: [M. Ohsaki, K. Fujisawa, N. Katoh and Y. Kanno, Semi-definite programming for topology optimization of trusses under multiple eigenvalue constraints, Comp. … Read more

On the Lovász theta-number of almost regular graphs with application to Erdös–Rényi graphs

We consider k-regular graphs with loops, and study the Lovász theta-numbers and Schrijver theta’-numbers of the graphs that result when the loop edges are removed. We show that the theta-number dominates a recent eigenvalue upper bound on the stability number due to Godsil and Newman [C.D. Godsil and M.W. Newman. Eigenvalue bounds for independent sets. … Read more

The complexity of optimizing over a simplex, hypercube or sphere: a short survey

We consider the computational complexity of optimizing various classes of continuous functions over a simplex, hypercube or sphere. These relatively simple optimization problems have many applications. We review known approximation results as well as negative (inapproximability) results from the recent literature. Citation CentER Discussion paper 2006-85 Tilburg University THe Netherlands Article Download View The complexity … Read more

Optimization of univariate functions on bounded intervals by interpolation and semidefinite programming

We consider the problem of minimizing a univariate, real-valued function f on an interval [a,b]. When f is a polynomial, we review how this problem may be reformulated as a semidefinite programming (SDP) problem, and review how to extract all global minimizers from the solution of the SDP problem. For general f, we approximate the … Read more

On the complexity of optimization over the standard simplex

We review complexity results for minimizing polynomials over the standard simplex and unit hypercube. In addition, we show that there exists a polynomial time approximation scheme (PTAS) for minimizing some classes of functions (including Lipschitz continuous functions) over the standard simplex. The main tools used in the analysis are Bernstein approximation and Lagrange interpolation on … Read more