Fleet & tail assignment under uncertainty

Airlines solve many different optimization problems and combine the resulting solutions to ensure smooth, minimum-cost operations. Crucial problems are the Fleet Assignment, which assigns aircraft types to flights of a given schedule, and the Tail Assignment, which determines individual flight sequences to be performed by single aircraft. In order to find a cost-optimal solution, many … Read more

An Integrated Rolling Horizon and Adaptive-Refinement Approach for Disjoint Trajectories Optimization

Planning of trajectories, i.e. paths over time, is a challenging task. Thereby, the trajectories for involved commodities often have to be considered jointly as separation constraints have to be respected. This is for example the case in robot motion or air traffic management. Involving these discrete separation constraints in the planning of best possible continuous … Read more

A novel decomposition approach for holistic airline optimization

Airlines face many different planning processes until the day of operation. These include Fleet Assignment, Tail Assignment and the associated control of ground processes between consecutive flights, called Turnaround Handling. All of these planning problems have in common that they often need to be reoptimized on the day of execution due to unplanned events. In … Read more

Robust Optimization in Nanoparticle Technology: A Proof of Principle by Quantum Dot Growth in a Residence Time Reactor

Knowledge-based determination of the best-possible experimental setups for nanoparticle design is highly challenging. Additionally, such processes are accompanied by noticeable uncertainties. Therefore, protection against these uncertainties is needed. Robust optimization helps determining such best possible processes. The latter guarantees quality requirements regardless of how the uncertainties, e.g. with regard to variations in raw materials, heat … Read more

Minimizing Delays of Patient Transports with Incomplete Information

We investigate a challenging task in ambulatory care, namely minimizing delays in patient transport. In practice, a limited number of vehicles is available for non-emergency transport. Furthermore, the dispatcher rarely has access to complete information when establishing a transport plan for dispatching the vehicles. If additional transport is requested on demand, then schedules have to … Read more

Mixed-Integer Reformulations of Resource-Constrained Two-Stage Assignment Problems

The running time for solving a mixed-integer linear optimization problem (MIP) strongly depends on the number of its integral variables. Bader et al. [Math. Progr. 169 (2018) 565–584] equivalently reformulate an integer program into an MIP that contains a reduced number of integrality constraints, when compared to the original model. Generalizing the concept of totally … Read more

The Non-Stop Disjoint Trajectories Problem

Given an undirected network with traversal times on its edges and connection requests from sources to destinations for commodities with release dates. The non-stop disjoint trajectories problem is to find trajectories that fulfill all requests, such that the commodities never meet. In this extension to the \NP-complete disjoint paths problem, trajectories must satisfy a non-stop … Read more

Solving AC Optimal Power Flow with Discrete Decisions to Global Optimality

We present a solution framework for general alternating current optimal power flow (AC OPF) problems that include discrete decisions. The latter occur, for instance, in the context of the curtailment of renewables or the switching of power generation units and transmission lines. Our approach delivers globally optimal solutions and is provably convergent. We model AC … Read more

Affinely Adjustable Robust Linear Complementarity Problems

Linear complementarity problems are a powerful tool for modeling many practically relevant situations such as market equilibria. They also connect many sub-areas of mathematics like game theory, optimization, and matrix theory. Despite their close relation to optimization, the protection of LCPs against uncertainties – especially in the sense of robust optimization – is still in … Read more

A rolling-horizon approach for multi-period optimization

Mathematical optimization problems including a time dimension abound. For example, logistics, process optimization and production planning tasks must often be optimized for a range of time periods. Usually, these problems incorporating time structure are very large and cannot be solved to global optimality by modern solvers within a reasonable period of time. Therefore, the so-called … Read more