Data-Driven Distributionally Robust Appointment Scheduling over Wasserstein Balls

We study a single-server appointment scheduling problem with a fixed sequence of appointments, for which we must determine the arrival time for each appointment. We specifically examine two stochastic models. In the first model, we assume that all appointees show up at the scheduled arrival times yet their service durations are random. In the second … Read more

Distributionally Robust Optimization with Confidence Bands for Probability Density Functions

Distributionally robust optimization (DRO) has been introduced for solving stochastic programs where the distribution of the random parameters is unknown and must be estimated by samples from that distribution. A key element of DRO is the construction of the ambiguity set, which is a set of distributions that covers the true distribution with a high … Read more

Improved Decision Rule Approximations for Multi-Stage Robust Optimization via Copositive Programming

We study decision rule approximations for generic multi-stage robust linear optimization problems. We consider linear decision rules for the case when the objective coefficients, the recourse matrices, and the right-hand sides are uncertain, and consider quadratic decision rules for the case when only the right-hand sides are uncertain. The resulting optimization problems are NP-hard but … Read more

An Integer Programming Formulation of the Key Management Problem in Wireless Sensor Networks

With the advent of modern communications systems, much attention has been put on developing methods for securely transferring information between constituents of wireless sensor networks. To this effect, we introduce a mathematical programming formulation for the key management problem, which broadly serves as a mechanism for encrypting communications. In particular, an integer programming model of … Read more

A Data-Driven Distributionally Robust Bound on the Expected Optimal Value of Uncertain Mixed 0-1 Linear Programming

This paper studies the expected optimal value of a mixed 0-1 programming problem with uncertain objective coefficients following a joint distribution. We assume that the true distribution is not known exactly, but a set of independent samples can be observed. Using the Wasserstein metric, we construct an ambiguity set centered at the empirical distribution from … Read more

A Copositive Approach for Two-Stage Adjustable Robust Optimization with Uncertain Right-Hand Sides

We study two-stage adjustable robust linear programming in which the right-hand sides are uncertain and belong to a convex, compact uncertainty set. This problem is NP-hard, and the affine policy is a popular, tractable approximation. We prove that under standard and simple conditions, the two-stage problem can be reformulated as a copositive optimization problem, which … Read more

Robust Sensitivity Analysis of the Optimal Value of Linear Programming

We propose a framework for sensitivity analysis of linear programs (LPs) in minimiza- tion form, allowing for simultaneous perturbations in the objective coefficients and right-hand sides, where the perturbations are modeled in a compact, convex uncertainty set. This framework unifies and extends multiple approaches for LP sensitivity analysis in the literature and has close ties … Read more

A Branch-and-Bound Algorithm for Instrumental Variable Quantile Regression

This paper studies a statistical problem called instrumental variable quantile regres- sion (IVQR). We model IVQR as a convex quadratic program with complementarity constraints and—although this type of program is generally NP-hard—we develop a branch-and-bound algorithm to solve it globally. We also derive bounds on key vari- ables in the problem, which are valid asymptotically … Read more