A SQP type method for constrained multiobjective optimization

We propose an SQP type method for constrained nonlinear multiobjective optimization. The proposed algorithm maintains a list of nondominated points that is improved both for spread along the Pareto front and optimality by solving singleobjective constrained optimization problems. Under appropriate differentiability assumptions we discuss convergence to local optimal Pareto points. We provide numerical results for … Read more

On the effects of combining objectives in multi-objective optimization

In multi-objective optimization, one considers optimization problems with more than one objective function, and in general these objectives conflict each other. As the solution set of a multiobjective problem is often rather large and contains points of no interest to the decision-maker, strategies are sought that reduce the size of the solution set. One such … Read more

Newton’s Method for Multiobjective Optimization

We propose an extension of Newton’s Method for unconstrained multiobjective optimization (multicriteria optimization). The method does not scalarize the original vector optimization problem, i.e. we do not make use of any of the classical techniques that transform a multiobjective problem into a family of standard optimization problems. Neither ordering information nor weighting factors for the … Read more

An Adaptive Primal-Dual Warm-Start Technique for Quadratic Multiobjective Optimization

We present a new primal-dual algorithm for convex quadratic multicriteria optimization. The algorithm is able to adaptively refine the approximation to the set of efficient points by way of a warm-start interior-point scalarization approach. Results of this algorithm when applied on a three-criteria real-world power plant optimization problem are reported, thereby illustrating the feasibility of … Read more

The Effects of Adding Objectives to an Optimization Problem on the Solution Set

Suppose that for a given optimisation problem (which might be multicriteria problem or a single-criteron problem), an additional objective function is introduced. How does the the set of solutions, i.~e.\ the set of efficient points change when instead of the old problem the new multicriteria problem is considered? How does the set of properly efficient … Read more

An Efficient Interior-Point Method for Convex Multicriteria Optimization Problems

In multicriteria optimization, several objective functions, conflicting with each other, have to be minimized simultaneously. We propose a new efficient method for approximating the solution set of a multiobjective programming problem, where the objective functions involved are arbitary convex functions and the set of feasible points is convex. The method is based on generating warm-start … Read more

A Multicriteria Approach to Bilevel Optimization

In this paper we study the relationship between bilevel optimization and bicriteria optimization. Given a bilevel optimization problem, we introduce an order relation such that the optimal solutions of the bilevel problem are the nondominated points with respect to the order relation. In the case where the lower level problem of the bilevel optimization problem … Read more

Constructing Approximations to the Efficient Set of Convex Quadratic Multiobjective Problems

In multicriteria optimization, several objective functions have to be minimized simultaneously. For this kind of problem, no single solution can adequately represent the whole set of optimal points. We propose a new efficient method for approximating the solution set of a convex quadratic multiobjective programming problem. The method is based on a warm-start interior point … Read more

Generalized Goal Programming: Polynomial Methods and Applications

In this paper we address a general Goal Programming problem with linear objectives, convex constraints, and an arbitrary componentwise nondecreasing norm to aggregate deviations with respect to targets. In particular, classical Linear Goal Programming problems, as well as several models in Location and Regression Analysis are modeled within this framework. In spite of its generality, … Read more