Dual descent ALM and ADMM

Classical primal-dual algorithms attempt to solve $\max_{\mu}\min_{x} \mathcal{L}(x,\mu)$ by alternatively minimizing over the primal variable $x$ through primal descent and maximizing the dual variable $\mu$ through dual ascent. However, when $\mathcal{L}(x,\mu)$ is highly nonconvex with complex constraints in $x$, the minimization over $x$ may not achieve global optimality, and hence the dual ascent step loses … Read more

Algorithms for Difference-of-Convex (DC) Programs Based on Difference-of-Moreau-Envelopes Smoothing

In this paper we consider minimization of a difference-of-convex (DC) function with and without linear constraints. We first study a smooth approximation of a generic DC function, termed difference-of-Moreau-envelopes (DME) smoothing, where both components of the DC function are replaced by their respective Moreau envelopes. The resulting smooth approximation is shown to be Lipschitz differentiable, … Read more

Decomposition Methods for Global Solutions of Mixed-Integer Linear Programs

This paper introduces two decomposition-based methods for two-block mixed-integer linear programs (MILPs), which aim to take advantage of separable structures of the original problem by solving a sequence of lower-dimensional MILPs. The first method is based on the $\ell_1$-augmented Lagrangian method (ALM), and the second one is based on a modified alternating direction method of … Read more

A Two-level ADMM Algorithm for AC OPF with Convergence Guarantees

This paper proposes a two-level distributed algorithmic framework for solving the AC optimal power flow (OPF) problem with convergence guarantees. The presence of highly nonconvex constraints in OPF poses significant challenges to distributed algorithms based on the alternating direction method of multipliers (ADMM). In particular, convergence is not provably guaranteed for nonconvex network optimization problems … Read more

A two-level distributed algorithm for nonconvex constrained optimization

This paper aims to develop distributed algorithms for nonconvex optimization problems with complicated constraints associated with a network. The network can be a physical one, such as an electric power network, where the constraints are nonlinear power flow equations, or an abstract one that represents constraint couplings between decision variables of different agents. Despite the … Read more