Short-Term Inventory-Aware Equipment Management in Service Networks

Logistics companies often operate a heterogeneous fleet of equipment to support their service network operations. This introduces a layer of planning complexity as facilities need to maintain appropriate levels of equipment types to support operations throughout the planning horizon. We formulate an optimization model that minimizes the cost of executing a load plan, assuming knowledge … Read more

A Column Generation Based Heuristic for the Split Delivery Vehicle Routing Problem with Time Windows

The vehicle routing problem with time windows (VRPTW) is one of the most studied variants of routing problems. We consider the Split Delivery VRPTW (SDVRPTW), an extension in which customers can be visited multiple times, if advantageous. While this additional flexibility can result in significant cost reductions, it also results in additional modeling and computational … Read more

Service Network Design for Same-Day Delivery with Hub Capacity Constraints

We study a new service network design problem for an urban same-day delivery system in which the number of vehicles that can simultaneously load or unload at a hub is limited. Due to the presence of both time constraints for the commodities and capacity constraints at the hubs, it is no longer guaranteed that a … Read more

A Robust Rolling Horizon Framework for Empty Repositioning

Naturally imbalanced freight flows force consolidation carriers to reposition resources empty. When constructing empty repositioning plans, the cost of repositioning resources empty needs to be weighed against the cost of corrective actions in case of unavailable resources. This is especially challenging given the uncertainty of future demand. We design and implement a robust rolling horizon … Read more

Integrated Pricing and Routing on a Network

We consider an integrated pricing and routing problem on a network. The problem is motivated by applications in freight transportation such as package delivery and less-than-truckload shipping services. The decision maker sets a price for each origin-destination pair of the network, which determines the demand flow that needs to be served. The flows are then … Read more

Learning Generalized Strong Branching for Set Covering, Set Packing, and 0-1 Knapsack Problems

Branching on a set of variables, rather than on a single variable, can give tighter bounds at the child nodes and can result in smaller search trees. However, selecting a good set of variables to branch on is even more challenging than selecting a good single variable to branch on. Generalized strong branching extends the … Read more

Substitution-based Equipment Balancing in Service Networks with Multiple Equipment Types

We investigate substitution-based equipment balancing for a package express carrier operating multiple equipment types in its service network. The weekly schedule of movements used to transport packages through the service network leads to changes in equipment inventory at the facilities in the network. We seek to reduce this change, i.e., the equipment imbalance associated with … Read more

Compact Formulations for Split Delivery Routing Problems

Split delivery routing problems are concerned with serving the demand of a set of customers with a fleet of capacitated vehicles at minimum cost, where a customer can be served by more than one vehicle if beneficial. They generalize traditional variants of routing problems and have applications in commercial as well as humanitarian logistics. Previously, … Read more

Multivariable branching: A 0-1 knapsack problem case study

We explore the benefits of multi-variable branching strategies for linear programming based branch and bound algorithms for the 0-1 knapsack problem, i.e., of branching on sets of variables rather than on a single variable (the current default in integer programming solvers). We present examples where multi-variable branching shows advantage over single-variable branching, and partially characterize … Read more

Pricing for Delivery Time Flexibility

We study a variant of the multi-period vehicle routing problem, in which a service provider offers a discount to customer in exchange for delivery flexibility. We establish theoretical properties and empirical insights regarding the intricate and complex relation between the benefit from additional delivery flexibility, the discounts offered to customers to gain additional delivery flexibility, … Read more