Complexity of the relaxed Peaceman-Rachford splitting method for the sum of two maximal strongly monotone operators

This paper considers the relaxed Peaceman-Rachford (PR) splitting method for fi nding an approximate solution of a monotone inclusion whose underlying operator consists of the sum of two maximal strongly monotone operators. Using general results obtained in the setting of a non-Euclidean hybrid proximal extragradient framework, convergence of the iterates, as well as pointwise and ergodic … Read more

Iteration-complexity of a Rockafellar’s proximal method of multipliers for convex programming based on second-order approximations

This paper studies the iteration-complexity of a new primal-dual algorithm based on Rockafellar’s proximal method of multipliers (PMM) for solving smooth convex programming problems with inequality constraints. In each step, either a step of Rockafellar’s PMM for a second-order model of the problem is computed or a relaxed extragradient step is performed. The resulting algorithm … Read more

Improved pointwise iteration-complexity of a regularized ADMM and of a regularized non-Euclidean HPE framework

This paper describes a regularized variant of the alternating direction method of multipliers (ADMM) for solving linearly constrained convex programs. It is shown that the pointwise iteration-complexity of the new method is better than the corresponding one for the standard ADMM method and that, up to a logarithmic term, is identical to the ergodic iteration-complexity … Read more

An accelerated non-Euclidean hybrid proximal extragradient-type Algorithm for convex-concave saddle-point Problems

This paper describes an accelerated HPE-type method based on general Bregman distances for solving monotone saddle-point (SP) problems. The algorithm is a special instance of a non-Euclidean hybrid proximal extragradient framework introduced by Svaiter and Solodov [28] where the prox sub-inclusions are solved using an accelerated gradient method. It generalizes the accelerated HPE algorithm presented … Read more

Regularized HPE-type methods for solving monotone inclusions with improved pointwise iteration-complexity bounds

This paper studies the iteration-complexity of new regularized hybrid proximal extragradient (HPE)-type methods for solving monotone inclusion problems (MIPs). The new (regularized HPE-type) methods essentially consist of instances of the standard HPE method applied to regularizations of the original MIP. It is shown that its pointwise iteration-complexity considerably improves the one of the HPE method … Read more

Primal-dual regularized SQP and SQCQP type methods for convex programming and their complexity analysis

This paper presents and studies the iteration-complexity of two new inexact variants of Rockafellar’s proximal method of multipliers (PMM) for solving convex programming (CP) problems with a fi nite number of functional inequality constraints. In contrast to the first variant which solves convex quadratic programming (QP) subproblems at every iteration, the second one solves convex constrained … Read more

An accelerated HPE-type algorithm for a class of composite convex-concave saddle-point problems

This article proposes a new algorithm for solving a class of composite convex-concave saddle-point problems. The new algorithm is a special instance of the hybrid proximal extragradient framework in which a Nesterov’s accelerated variant is used to approximately solve the prox subproblems. One of the advantages of the new method is that it works for … Read more

An inexact block-decomposition method for extra large-scale conic semidefinite programming

In this paper, we present an inexact block-decomposition (BD) first-order method for solving standard form conic semidefinite programming (SDP) which avoids computations of exact projections onto the manifold defined by the affine constraints and, as a result, is able to handle extra large SDP instances. The method is based on a two-block reformulation of the … Read more

Accelerating block-decomposition first-order methods for solving composite saddle-point and two-player Nash equilibrium problems

This article considers the two-player composite Nash equilibrium (CNE) problem with a separable non-smooth part, which is known to include the composite saddle-point (CSP) problem as a special case. Due to its two-block structure, this problem can be solved by any algorithm belonging to the block-decomposition hybrid proximal-extragradient (BD-HPE) framework. The framework consists of a … Read more

A hybrid proximal extragradient self-concordant primal barrier method for monotone variational inequalities

In this paper we present a primal interior-point hybrid proximal extragradient (HPE) method for solving a monotone variational inequality over a closed convex set endowed with a self-concordant barrier and whose underlying map has Lipschitz continuous derivative. In contrast to the method of “R. D. C. Monteiro and B. F. Svaiter, Iteration-Complexity of a Newton … Read more