On Families of Quadratic Surfaces Having Fixed Intersections with Two Hyperplanes

We investigate families of quadrics that have fixed intersections with two given hyper-planes. The cases when the two hyperplanes are parallel and when they are nonparallel are discussed. We show that these families can be described with only one parameter. In particular we show how the quadrics are transformed as the parameter changes. This research … Read more

A conic representation of the convex hull of disjunctive sets and conic cuts for integer second order cone optimization

We study the convex hull of the intersection of a convex set E and a linear disjunction. This intersection is at the core of solution techniques for Mixed Integer Conic Optimization. We prove that if there exists a cone K (resp., a cylinder C) that has the same intersection with the boundary of the disjunction … Read more

On feasibility based bounds tightening

Mathematical programming problems involving nonconvexities are usually solved to optimality using a (spatial) Branch-and-Bound algorithm. Algorithmic efficiency depends on many factors, among which the widths of the bounding box for the problem variables at each Branch-and-Bound node naturally plays a critical role. The practically fastest box-tightening algorithm is known as FBBT (Feasibility-Based Bounds Tightening): an … Read more

Bound reduction using pairs of linear inequalities

We describe a procedure to reduce variable bounds in Mixed Integer Nonlinear Programming (MINLP) as well as Mixed Integer Linear Programming (MILP) problems. The procedure works by combining pairs of inequalities of a linear programming (LP) relaxation of the problem. This bound reduction technique extends the implied bounds procedure used in MINLP and MILP and … Read more

A Probing Algorithm for MINLP with Failure Prediction by SVM

Bound tightening is an important component of algorithms for solving nonconvex Mixed Integer Nonlinear Programs. A {\em probing} algorithm is a bound-tightening procedure that explores the consequences of restricting a variable to a subinterval with the goal of tightening its bounds. We propose a variant of probing where exploration is based on iteratively applying a … Read more

Disjunctive cuts for non-convex MINLP

Mixed Integer Nonlinear Programming (MINLP) problems present two main challenges: the integrality of a subset of variables and nonconvex (nonlinear) objective function and constraints. Many exact solvers for MINLP are branch-and-bound algorithms that compute a lower bound on the optimal solution using a linear programming relaxation of the original problem. In order to solve these … Read more

OSPF Routing with Optimal Oblivious Performance Ratio Under Polyhedral Demand Uncertainty

We study the best OSPF style routing problem in telecommunication networks, where weight management is employed to get a routing configuration with the minimum oblivious ratio. We consider polyhedral demand uncertainty: the set of traffic matrices is a polyhedron defined by a set of linear constraints, and the performance of each routing is assessed on … Read more

Branching and bounds tightening techniques for non-convex MINLP

Many industrial problems can be naturally formulated using Mixed Integer Nonlinear Programming (MINLP). Motivated by the demand for Open-Source solvers for real-world MINLP problems, we have developed a spatial Branch-and-Bound software package named COUENNE (Convex Over- and Under-ENvelopes for Nonlinear Estimation). In this paper, we present the structure of couenne and discuss in detail our … Read more

Provisioning Virtual Private Networks under traffic uncertainty

We investigate a network design problem under traffic uncertainty which arises when provisioning Virtual Private Networks (VPNs): given a set of terminals that must communicate with one another, and a set of possible traffic matrices, sufficient capacity has to be reserved on the links of the large underlying public network so as to support all … Read more