Lifting convex inequalities for bipartite bilinear programs

The goal of this paper is to derive new classes of valid convex inequalities for quadratically constrained quadratic programs (QCQPs) through the technique of lifting. Our first main result shows that, for sets described by one bipartite bilinear constraint together with bounds, it is always possible to sequentially lift a seed inequality that is valid … Read more

A Scalable Lower Bound for the Worst-Case Relay Attack Problem on the Transmission Grid

We consider a bilevel attacker-defender problem to find the worst-case attack on the relays that control transmission grid components. The attacker infiltrates some number of relays and renders all of the components connected to them inoperable, with the goal of maximizing load shed. The defender responds by minimizing the resulting load shed, re-dispatching using a … Read more

Lower Bounds on the Size of General Branch-and-Bound Trees

A \emph{general branch-and-bound tree} is a branch-and-bound tree which is allowed to use general disjunctions of the form $\pi^{\top} x \leq \pi_0 \,\vee\, \pi^{\top}x \geq \pi_0 + 1$, where $\pi$ is an integer vector and $\pi_0$ is an integer scalar, to create child nodes. We construct a packing instance, a set covering instance, and a … Read more

Cutting Plane Generation Through Sparse Principal Component Analysis

Quadratically-constrained quadratic programs (QCQPs) are optimization models whose remarkable expressiveness has made them a cornerstone of methodological research for nonconvex optimization problems. However, modern methods to solve a general QCQP fail to scale, encountering computational challenges even with just a few hundred variables. Specifically, a semidefinite programming (SDP) relaxation is typically employed, which provides strong … Read more

Branch-and-Bound Solves Random Binary IPs in Polytime

Branch-and-bound is the workhorse of all state-of-the-art mixed integer linear programming (MILP) solvers. These implementations of branch-and-bound typically use variable branching, that is, the child nodes are obtained by fixing some variable to an integer value v in one node and to v + 1 in the other node. Even though modern MILP solvers are … Read more

A K-Nearest Neighbor Heuristic for Real-Time DC Optimal Transmission Switching

While transmission switching is known to reduce power generation costs, the difficulty of solving even DC optimal transmission switching (DCOTS) has prevented optimal transmission switching from becoming commonplace in real-time power systems operation. In this paper, we present a k-nearest neighbors (KNN) heuristic for DCOTS which relies on the insight that, for routine operations on … Read more

Sparse PSD approximation of the PSD cone

While semidefinite programming (SDP) problems are polynomially solvable in theory, it is often difficult to solve large SDP instances in practice. One technique to address this issue is to relax the global positive-semidefiniteness (PSD) constraint and only enforce PSD-ness on smaller k times k principal submatrices — we call this the sparse SDP relaxation. Surprisingly, … Read more

A study of rank-one sets with linear side constraints and application to the pooling problem

We study sets defined as the intersection of a rank-1 constraint with different choices of linear side constraints. We identify different conditions on the linear side constraints, under which the convex hull of the rank-1 set is polyhedral or second-order cone representable. In all these cases, we also show that a linear objective can be … Read more

The convex hull of a quadratic constraint over a polytope

A quadratically constrained quadratic program (QCQP) is an optimization problem in which the objective function is a quadratic function and the feasible region is defined by quadratic constraints. Solving non-convex QCQP to global optimality is a well-known NP-hard problem and a traditional approach is to use convex relaxations and branch-and-bound algorithms. This paper makes a … Read more

A convex integer programming approach for optimal sparse PCA

Principal component analysis (PCA) is one of the most widely used dimensionality reduction tools in scientific data analysis. The PCA direction, given by the leading eigenvector of a covariance matrix, is a linear combination of all features with nonzero loadings—this impedes interpretability. Sparse principal component analysis (SPCA) is a framework that enhances interpretability by incorporating … Read more