A Polyhedral Study of the Static Probabilistic Lot-Sizing Problem

We study the polyhedral structure of the static probabilistic lot-sizing (SPLS) problem and propose facets that subsume existing inequalities for this problem. In addition, the proposed inequalities give the convex hull description of a related stochastic lot-sizing problem. We propose a new compact formulation that exploits the simple recourse structure, which can be applied to … Read more

Robust Multicriteria Risk-Averse Stochastic Programming Models

In this paper, we study risk-averse models for multicriteria optimization problems under uncertainty. We use a weighted sum-based scalarization and take a robust approach by considering a set of scalarization vectors to address the ambiguity and inconsistency in the relative weights of each criterion. We model the risk aversion of the decision makers via the … Read more

Cut Generation for Optimization Problems with Multivariate Risk Constraints

We consider a class of multicriteria stochastic optimization problems that features benchmarking constraints based on conditional value-at-risk and second-order stochastic dominance. We develop alternative mixed-integer programming formulations and solution methods for cut generation problems arising in optimization under such multivariate risk constraints. We give the complete linear description of two non-convex substructures appearing in these … Read more

Decomposition Algorithms for Two-Stage Chance-Constrained Programs

We study a class of chance-constrained two-stage stochastic optimization problems where second-stage feasible recourse decisions incur additional cost. In addition, we propose a new model, where “recovery” decisions are made for the infeasible scenarios to obtain feasible solutions to a relaxed second-stage problem. We develop decomposition algorithms with specialized optimality and feasibility cuts to solve … Read more

Finitely Convergent Decomposition Algorithms for Two-Stage Stochastic Pure Integer Programs

We study a class of two-stage stochastic integer programs with general integer variables in both stages and finitely many realizations of the uncertain parameters. Based on Benders’ method, we propose a decomposition algorithm that utilizes Gomory cuts in both stages. The Gomory cuts for the second-stage scenario subproblems are parameterized by the first-stage decision variables, … Read more

On the Transportation Problem with Market Choice

We study a variant of the classical transportation problem in which suppliers with limited capacities have a choice of which demands (markets) to satisfy. We refer to this problem as the transportation problem with market choice (TPMC). While the classical transportation problem is known to be strongly polynomial-time solvable, we show that its market choice … Read more

Chance-constrained binary packing problems

We consider a class of packing problems with uncertain data, which we refer to as the chance-constrained binary packing problem. In this problem, a subset of items is selected that maximizes the total profit so that a generic packing constraint is satisfied with high probability. Interesting special cases of our problem include chance-constrained knapsack and … Read more

Decomposition Algorithms with Parametric Gomory Cuts for Two-Stage Stochastic Integer Programs

We consider a class of two-stage stochastic integer programs with binary variables in the first stage and general integer variables in the second stage. We develop decomposition algorithms akin to the L-shaped or Benders methods by utilizing Gomory cuts to obtain iteratively tighter approximations of the second-stage integer programs. We show that the proposed methodology … Read more

Formulations for Dynamic Lot Sizing with Service Levels

In this paper, we study deterministic dynamic lot-sizing problems with service level constraints on the total number of periods in which backorders can occur over the finite planning horizon. We give a natural mixed integer programming formulation for the single item problem (LS-SL-I) and study the structure of its solution. We show that an optimal … Read more

A Computational Study of the Cutting Plane Tree Algorithm for General Mixed-Integer Linear Programs

The cutting plane tree (CPT) algorithm provides a finite disjunctive programming procedure to obtain the solution of general mixed-integer linear programs (MILP) with bounded integer variables. In this paper, we present our computational experience with variants of the CPT algorithm. Because the CPT algorithm is based on discovering multi-term disjunctions, this paper is the first … Read more