A New Inexact Proximal Linear Algorithm with Adaptive Stopping Criteria for Robust Phase Retrieval

This paper considers the robust phase retrieval problem, which can be cast as a nonsmooth and nonconvex optimization problem. We propose a new inexact proximal linear algorithm with the subproblem being solved inexactly. Our contributions are two adaptive stopping criteria for the subproblem. The convergence behavior of the proposed methods is analyzed. Through experiments on … Read more

A Riemannian ADMM

We consider a class of Riemannian optimization problems where the objective is the sum of a smooth function and a nonsmooth function, considered in the ambient space. This class of problems finds important applications in machine learning and statistics such as the sparse principal component analysis, sparse spectral clustering, and orthogonal dictionary learning. We propose … Read more

Decentralized Stochastic Bilevel Optimization with Improved Per-Iteration Complexity

Bilevel optimization recently has received tremendous attention due to its great success in solving important machine learning problems like meta learning, reinforcement learning, and hyperparameter optimization. Extending single-agent training on bilevel problems to the decentralized setting is a natural generalization, and there has been a flurry of work studying decentralized bilevel optimization algorithms. However, it … Read more

Federated Learning on Riemannian Manifolds

Federated learning (FL) has found many important applications in smart-phone-APP based machine learning applications. Although many algorithms have been studied for FL, to the best of our knowledge, algorithms for FL with nonconvex constraints have not been studied. This paper studies FL over Riemannian manifolds, which finds important applications such as federated PCA and federated … Read more

Decentralized Bilevel Optimization

Bilevel optimization has been successfully applied to many important machine learning problems. Algorithms for solving bilevel optimization have been studied under various settings. In this paper, we study the nonconvex-strongly-convex bilevel optimization under a decentralized setting. We design decentralized algorithms for both deterministic and stochastic bilevel optimization problems. Moreover, we analyze the convergence rates of … Read more

Riemannian Stochastic Proximal Gradient Methods for Nonsmooth Optimization over the Stiefel Manifold

Riemannian optimization has drawn a lot of attention due to its wide applications in practice. Riemannian stochastic first-order algorithms have been studied in the literature to solve large-scale machine learning problems over Riemannian manifolds. However, most of the existing Riemannian stochastic algorithms require the objective function to be differentiable, and they do not apply to … Read more

Efficiently Escaping Saddle Points in Bilevel Optimization

Bilevel optimization is one of the fundamental problems in machine learning and optimization. Recent theoretical developments in bilevel optimization focus on finding the first-order stationary points for nonconvex-strongly-convex cases. In this paper, we analyze algorithms that can escape saddle points in nonconvex-strongly-convex bilevel optimization. Specifically, we show that the perturbed approximate implicit differentiation (AID) with … Read more

On the Convergence of Projected Alternating Maximization for Equitable and Optimal Transport

This paper studies the equitable and optimal transport (EOT) problem, which has many applications such as fair division problems and optimal transport with multiple agents etc. In the discrete distributions case, the EOT problem can be formulated as a linear program (LP). Since this LP is prohibitively large for general LP solvers, Scetbon \etal \cite{scetbon2021equitable} … Read more

A Riemannian Block Coordinate Descent Method for Computing the Projection Robust Wasserstein Distance

The Wasserstein distance has become increasingly important in machine learning and deep learning. Despite its popularity, the Wasserstein distance is hard to approximate because of the curse of dimensionality. A recently proposed approach to alleviate the curse of dimensionality is to project the sampled data from the high dimensional probability distribution onto a lower-dimensional subspace, … Read more

Projection Robust Wasserstein Barycenters

Collecting and aggregating information from several probability measures or histograms is a fundamental task in machine learning. One of the popular solution methods for this task is to compute the barycenter of the probability measures under the Wasserstein metric. However, approximating the Wasserstein barycenter is numerically challenging because of the curse of dimensionality. This paper … Read more