Convergence and Complexity Analysis of a Levenberg-Marquardt Algorithm for Inverse Problems

The Levenberg-Marquardt algorithm is one of the most popular algorithms for finding the solution of nonlinear least squares problems. Across different modified variations of the basic procedure, the algorithm enjoys global convergence, a competitive worst case iteration complexity rate, and a guaranteed rate of local convergence for both zero and nonzero small residual problems, under … Read more

On the use of the energy norm in trust-region and adaptive cubic regularization subproblems

We consider solving unconstrained optimization problems by means of two popular globalization techniques: trust-region (TR) algorithms and adaptive regularized framework using cubics (ARC). Both techniques require the solution of a so-called “subproblem” in which a trial step is computed by solving an optimization problem involving an approximation of the objective function, called “the model”. The … Read more

Globally Convergent Evolution Strategies for Constrained Optimization.

In this work we propose, analyze, and test algorithms for linearly constrained optimization when no use of derivatives of the objective function is made. The proposed methodology is built upon the globally convergent evolution strategies previously introduced by the authors for unconstrained optimization. Two approaches are encompassed to handle the constraints. In a first approach, … Read more

Globally Convergent Evolution Strategies and CMA-ES

In this paper we show how to modify a large class of evolution strategies (ES) to rigorously achieve a form of global convergence, meaning convergence to stationary points independently of the starting point. The type of ES under consideration recombine the parents by means of a weighted sum, around which the offsprings are computed by … Read more