A Study of the Lot-Sizing Polytope

The lot-sizing polytope is a fundamental structure contained in many practical production planning problems. Here we study this polytope and identify facet-defining inequalities that cut off all fractional extreme points of its linear programming relaxation, as well as liftings from those facets. We give a polynomial-time combinatorial separation algorithm for the inequalities when capacities are … Read more

Robust Option Modelling

This paper considers robust optimization to cope with uncertainty about the stock return process in one period portfolio selection problems involving options. The ro- bust approach relates portfolio choice to uncertainty, making more cautious portfolios when uncertainty is high. We represent uncertainty by a set of plausible expected returns of the underlyings and show that … Read more

A semidefinite programming heuristic for quadratic programming problems with complementarity constraints

The presence of complementarity constraints brings a combinatorial flavour to an optimization problem. A quadratic programming problem with complementarity constraints can be relaxed to give a semidefinite programming problem. The solution to this relaxation can be used to generate feasible solutions to the complementarity constraints. A quadratic programming problem is solved for each of these … Read more

Rebalancing an Investment Portfolio in the Presence of Transaction Costs

The inclusion of transaction costs is an essential element of any realistic portfolio optimization. In this paper, we consider an extension of the standard portfolio problem in which transaction costs are incurred to rebalance an investment portfolio. The Markowitz framework of mean-variance efficiency is used with costs modelled as a percentage of the value transacted. … Read more

Transparent optical network design with sparse wavelength conversion

We consider the design of transparent optical networks from a practical perspective. Network operators aim at satisfying the communication demands at minimum cost. Such an optimization involves three interdependent planning issues: the dimensioning of the physical topology, the routing of lightpaths, and the wavelength assignment. Further topics include the reliability of the configuration and sparse … Read more

A hybrid genetic algorithm for manufacturing cell formation

Cellular manufacturing emerged as a production strategy capable of solving the problems of complexity and long manufacturing lead times in batch production. The fundamental problem in cellular manufacturing is the formation of product families and machine cells. This paper presents a new approach for obtaining machine cells and product families. The approach combines a local … Read more

Optimisation of physical and financial power purchase portfolios

The deregulation of the European power market brings new sales prospects for the power-suppliers as well as an appreciable increase of entrepreneurial risks. In order to handle the novel price- and volume-risks the optimisation of decisionmaking under uncertain boundary conditions is of essential interest. The former task of resource management in energy-supply was the minimisation … Read more

Optimal Portfolios using Linear Programming Models

The classical Quadratic Programming formulation of the well known portfolio selection problem, is cumbersome, time consuming and relies on two important assumptions: (a) the expected return is multivariate normally distributed; (b) the investor is risk averter. This paper formulates two alternative models, (i) maximin, and (ii) minimization of absolute deviation. Data from a very simple … Read more

STRONG LOWER BOUNDS FOR THE PRIZE COLLECTING STEINER PROBLEM IN GRAPHS

Given an undirected graph G with nonnegative edges costs and nonnegative vertex penalties, the prize collecting Steiner problem in graphs (PCSPG) seeks a tree of G with minimum weight. The weight of a tree is the sum of its edge costs plus the sum of the penalties of those vertices not spanned by the tree. … Read more

Scheduling a sequence of tasks with general completion costs

Scheduling a sequence of tasks – in the acceptation of finding the execution times – is not a trivial problem when the optimization criterion is irregular as for instance in earliness-tardiness problems. This paper presents an efficient Dynamic Programming algorithm to solve the problem with general cost functions depending on the end time of the … Read more