The stochastic vehicle routing problem, a literature review, part I: models

Building on the work of Gendreau, Laporte, and Seguin (1996), we review the past 20 years of scientific literature on stochastic vehicle routing problems (SVRP). The numerous variants of the problem that have been studied in the literature are described and categorized. Also a thorough review of solution methods applied to the SVRP is included … Read more

The Vehicle Routing Problem with Occasional Drivers

We consider a setting in which a company not only has a fleet of capacitated vehicles and drivers available to make deliveries, but may also use the services of occasional drivers who are willing to make a single delivery using their own vehicle in return for a small compensation if the delivery location is not … Read more

A branch-price-and-cut algorithm for the vehicle routing problem with time windows and multiple deliverymen

We address a variant of the vehicle routing problem with time windows (VRPTW) that includes the decision of how many deliverymen should be assigned to each vehicle. In this variant, the service time at each customer depends on the size of the respective demand and on the number of deliverymen assigned to visit this customer. … Read more

Vehicle Routing with Roaming Delivery Locations

We propose the vehicle routing problem with roaming delivery locations (VRPRDL) to model an innovation in last-mile delivery where a customer’s order is delivered to the trunk of his car. We develop construction and improvement heuristics for the VRPRDL based on two problem-specific techniques: (1) efficiently optimizing the delivery locations for a fixed customer delivery … Read more

Bulk Ship Fleet Renewal and Deployment under Uncertainty: A Multi-Stage Stochastic Programming Approach

We study a maritime fleet renewal and deployment problem under demand and charter cost uncertainty. A decision-maker for an industrial bulk shipping company must determine a suitable fleet size, mix, and deployment strategy to satisfy stochastic demand over a given planning horizon. She may acquire vessels in two ways: time chartering and voyage chartering. Time … Read more

Application of the Laminar Navier-Stokes Equations for Solving 2D and 3D Pathfinding Problems with Static and Dynamic Spatial Constraints. Implementation and validation in Comsol Multiphysics.

Pathfinding problems consist in determining the optimal shortest path, or at least one path, between two points in the space. In this paper, we propose a particular approach, based on methods used in Computational Fluid Dynamics, that intends to solve such problems. In particular, we reformulate pathfinding problems as the motion of a viscous fluid … Read more

Network Design Problem with Relays

Relays are regenerators extending the reach of optical signals in telecommunication networks; they may be strategic locations where exchange of drivers, trucks or mode of transportation takes place in transportation networks; they may become refuelling/recharging stations extending the reach of alternative fuel vehicles in green transportation. With different names and characteristics, relays play a crucial … Read more

Partial outer convexification for traffic light optimization in road networks

We consider the problem of computing optimal traffic light programs for urban road intersections using traffic flow conservation laws on networks. Based on a Partial Outer Convexification approach, which has been successfully applied in the area of mixed-integer optimal control for systems of ordinary or differential algebraic equations, we develop a computationally tractable two-stage solution … Read more

Free-Floating Bike Sharing: Solving Real-life Large-scale Static Rebalancing Problems

Free-floating bike sharing (FFBS) is an innovative bike sharing model. FFBS saves on start-up cost, in comparison to station-based bike sharing (SBBS), by avoiding construction of expensive docking stations and kiosk machines. FFBS prevents bike theft and offers significant opportunities for smart management by tracking bikes in real-time with built-in GPS. However, like SBBS, the … Read more

A Cutting Plane Method for Risk-constrained Traveling Salesman Problem with Random Arc Costs

This paper considers the risk-constrained stochastic traveling salesman problem with random arc costs. In the context of stochastic arc costs, the deterministic traveling salesman problem’s optimal solutions would be ineffective because the selected route might be exposed to a greater risk where the actual cost can exceed the resource limit in extreme scenarios. We present … Read more