Locally weighted regression models for surrogate-assisted design optimization

Locally weighted regression combines the advantages of polynomial regression and kernel smoothing. We present three ideas for appropriate and effective use of LOcally WEighted Scatterplot Smoothing (LOWESS) models for surrogate optimization. First, a method is proposed to reduce the computational cost of LOWESS models. Second, a local scaling coefficient is introduced to adapt LOWESS models … Read more

A Subgradient Method for Free Material Design

A small improvement in the structure of the material could save the manufactory a lot of money. The free material design can be formulated as an optimization problem. However, due to its large scale, second-order methods cannot solve the free material design problem in reasonable size. We formulate the free material optimization (FMO) problem into … Read more

Optimal design of multiphase composites under elastodynamic loading

An algorithm is proposed to optimize the performance of multiphase structures (composites) under elastodynamic loading conditions. The goal is to determine the distribution of material in the structure such that the time-averaged total stored energy of structure is minimized. A penalization strategy is suggested to avoid the checkerboard instability, simultaneously to generate near 0-1 topologies. … Read more

Calibration by Optimization Without Using Derivatives

Applications in engineering frequently require the adjustment of certain parameters. While the mathematical laws that determine these parameters often are well understood, due to time limitations in every day industrial life, it is typically not feasible to derive an explicit computational procedure for adjusting the parameters based on some given measurement data. This paper aims … Read more

Stochastic Topology Design Optimization for Continuous Elastic Materials

In this paper, we develop a stochastic model for topology optimization. We find robust structures that minimize the compliance for a given main load having a stochastic behavior. We propose a model that takes into account the expected value of the compliance and its variance. We show that, similarly to the case of truss structures, … Read more

Multimaterial topology optimization by volume constrained Allen-Cahn system and regularized projected steepest descent method

A new computational algorithm is introduced in the present study to solve multimaterial topology optimization problems. It is based on the penalization of the objective functional by the multiphase volume constrained Cahn-Hilliard energy functional. The update procedure is based on the gradient flow of the objective functional by a fractional step projected steepest descent method. … Read more

A SIMPLE TROLLEY-LIKE MODEL IN THE PRESENCE OF A NONLINEAR FRICTION AND A BOUNDED FUEL EXPENDITURE

We consider a problem of maximization of the distance traveled by a material point in the presence of a nonlinear friction under a bounded thrust and fuel expenditure. Using the maximum principle we obtain the form of optimal control and establish conditions under which it contains a singular subarc. This problem seems to be the … Read more

Mixed-Integer Linear Methods for Layout-Optimization of Screening Systems in Recovered Paper Production

The industrial treatment of waste paper in order to regain valuable fibers from which recovered paper can be produced, involves several steps of preparation. One important step is the separation of stickies that are normally attached to the paper. If not properly separated, remaining stickies reduce the quality of the recovered paper or even disrupt … Read more

Note: Optimal non-homogeneous composites for dynamic loading revisited

The continuous adjoint sensitivity analysis for a class of optimal design problem, formerly studied in (Turteltaub, 2005), is revisited in this note. Full details of derivation is presented. It is shown that the adjoint PDE derived in this study is not identical to one derived in (Turteltaub, 2005). ArticleDownload View PDF

Optimal synthesis in the Reeds and Shepp problem with a onesided variation of velocity

We consider a time-optimal problem for the Reeds and Shepp model describing a moving point on a plane, with a onesided variation of the speed and a free final direction of velocity. Using Pontryagin Maximum Principle, we obtain all possible types of extremals and, analyzing them and discarding nonoptimal ones, construct the optimal synthesis. Citationhttp://link.springer.com/article/10.1007/s10957-013-0286-8