Optimal synthesis in the Reeds and Shepp problem with a free final direction

We consider a time-optimal problem for the Reeds and Shepp model describing a moving point on a plane, with a free final direction of velocity. Using Pontryagin Maximum Principle, we obtain all types of extremals and, analysing them and discarding nonoptimal ones, construct the optimal synthesis. Article Download View Optimal synthesis in the Reeds and … Read more

Structural optimization of the Ziegler’s pendulum: singularities and exact optimal solutions

Structural optimization of non-conservative systems with respect to stability criteria is a research area with important applications in fluid-structure interactions, friction-induced instabilities, and civil engineering. In contrast to optimization of conservative systems where rigorously proven optimal solutions in buckling problems have been found, for non-conservative optimization problems only numerically optimized designs were reported. The proof … Read more

Minimum weight Topology optimization subject to unsteady heat equation and space-time pointwise constraints — toward automatic optimal riser design in the shape casting process

The automatic optimal design of feeding system in the shape casting process is considered in the present work. In fact, the goal is to find the optimal position, size, shape and topology of risers in the shape casting process. This problem is formulated as a minimum weight topology optimization problem subjected to a nonlinear transient … Read more

Truss topology design with integer variables made easy

We propose a new look at the problem of truss topology optimization with integer or binary variables. We show that the problem can be equivalently formulated as an integer \emph{linear} semidefinite optimization problem. This makes its numerical solution much easier, compared to existing approaches. We demonstrate that one can use an off-the-shelf solver with default … Read more

Multidisciplinary Free Material Optimization

We present a mathematical framework for the so-called multidisciplinary free material optimization (MDFMO) problems, a branch of structural optimization in which the full material tensor is considered as a design variable. We extend the original problem statement by a class of generic constraints depending either on the design or on the state variables. Among the … Read more

Free Material Optimization with Fundamental Eigenfrequency Constraints.

The goal of this paper is to formulate and solve free material optimization problems with constraints on the smallest eigenfrequency of the optimal structure. A natural formulation of this problem as linear semidefinite program turns out to be numerically intractable. As an alternative, we propose a new approach, which is based on a nonlinear semidefinite … Read more

A computational study of the use of an optimization-based method for simulating large multibody systems

The present work aims at comparing the performance of several quadratic programming (QP) solvers for simulating large-scale frictional rigid-body systems. Traditional time-stepping schemes for simulation of multibody systems are formulated as linear complementarity problems (LCPs) with copositive matrices. Such LCPs are generally solved by means of Lemketype algorithms and solvers such as the PATH solver … Read more

Large-Scale Parallel Multibody Dynamics with Frictional Contact on the Graphical Processing Unit

In the context of simulating the frictional contact dynamics of large systems of rigid bodies, this paper reviews a novel method for solving large cone complementarity problems by means of a fixed-point iteration algorithm. The method is an extension of the Gauss-Seidel and Gauss-Jacobimethods with overrelaxation for symmetric convex linear complementarity problems. Convergent under fairly … Read more

Fast Computation of Optimal Contact Forces

We consider the problem of computing the smallest contact forces, with point-contact friction model, that can hold an object in equilibrium against a known external applied force and torque. It is known that the force optimization problem (FOP) can be formulated as a semidefinite programming problem (SDP), or a second-order cone problem (SOCP), and so … Read more

A Sequential Convex Semidefinite Programming Algorithm for Multiple-Load Free Material Optimization

A new method for the efficient solution of free material optimization problems is introduced. The method extends the sequential convex programming (SCP) concept to a class of optimization problems with matrix variables. The basic idea of the new method is to approximate the original optimization problem by a sequence of subproblems, in which nonlinear functions … Read more