Scalable Algorithms for the Sparse Ridge Regression

Sparse regression and variable selection for large-scale data have been rapidly developed in the past decades. This work focuses on sparse ridge regression, which enforces the sparsity by use of the L0 norm. We first prove that the continuous relaxation of the mixed integer second order conic (MISOC) reformulation using perspective formulation is equivalent to … Read more

An Approximation Algorithm for Vehicle Routing with Compatibility Constraints

We study a multiple-vehicle routing problem with a minimum makespan objective and compatibility constraints. We provide an approximation algorithm and a nearly-matching hardness of approximation result. We also provide computational results on benchmark instances with diverse sizes showing that the proposed algorithm (i) has a good empirical approximation factor, (ii) runs in a short amount … Read more

A new approximation algorithm for unrelated parallel machine scheduling problem with release dates

In this research, we consider the unrelated parallel machine scheduling problem with release dates. The goal of this scheduling problem is to find an optimal job assignment with minimal sum of weighted completion times. As it is demonstrated in the present paper, this problem is NP-hard in the strong sense. Albeit the computational complexity, which … Read more

Approximation Properties of Sum-Up Rounding in the Presence of Vanishing Constraints

Approximation algorithms like sum-up rounding that allow to compute integer-valued approximations of the continuous controls in a weak$^*$ sense have attracted interest recently. They allow to approximate (optimal) feasible solutions of continuous relaxations of mixed-integer control problems (MIOCPs) with integer controls arbitrarily close. To this end, they use compactness properties of the underlying state equation, … Read more

A class of spectral bounds for Max k-cut

In this paper we introduce a new class of bounds for the maximum -cut problem on undirected edge-weighted simple graphs. The bounds involve eigenvalues of the weighted adjacency matrix together with geometrical parameters. They generalize previous results on the maximum (2-)cut problem and we demonstrate that they can strictly improve over other eigenvalue bounds from … Read more

Approximate Positively Correlated Distributions and Approximation Algorithms for D-optimal Design

Experimental design is a classical problem in statistics and has also found new applications in machine learning. In the experimental design problem, the aim is to estimate an unknown vector x in m-dimensions from linear measurements where a Gaussian noise is introduced in each measurement. The goal is to pick k out of the given … Read more

Approximation algorithms for the covering-type k-violation linear program

We study the covering-type k-violation linear program where at most $k$ of the constraints can be violated. This problem is formulated as a mixed integer program and known to be strongly NP-hard. In this paper, we present a simple (k+1)-approximation algorithm using a natural LP relaxation. We also show that the integrality gap of the … Read more

The forwarder planning problem in a two-echelon network

This paper is motivated by the case of a forwarder in dealing with inland transportation planning from a seaport, where inbound containers from the sea are filled with pallets, which have different destinations in the landside. Although this forwarder does not have or control any vehicle, he is required to plan the assignment of containers … Read more

Computation of exact bootstrap confidence intervals: complexity and deterministic algorithms

The bootstrap is a nonparametric approach for calculating quantities, such as confidence intervals, directly from data. Since calculating exact bootstrap quantities is believed to be intractable, randomized resampling algorithms are traditionally used. Motivated by the fact that the variability from randomization can lead to inaccurate outputs, we propose a deterministic approach. First, we establish several … Read more

Planar Maximum Coverage Location Problem with Partial Coverage and General Spatial Representation of Demand and Service Zones

We introduce a new generalization of the classical planar maximum coverage location problem (PMCLP) in which demand zones and service zone of each facility are represented by spatial objects such as circles, polygons, etc., and are allowed to be located anywhere in a continuous plane. In addition, we allow partial coverage in its true sense, … Read more