A class of spectral bounds for Max k-cut

In this paper we introduce a new class of bounds for the maximum -cut problem on undirected edge-weighted simple graphs. The bounds involve eigenvalues of the weighted adjacency matrix together with geometrical parameters. They generalize previous results on the maximum (2-)cut problem and we demonstrate that they can strictly improve over other eigenvalue bounds from … Read more

Approximate Positively Correlated Distributions and Approximation Algorithms for D-optimal Design

Experimental design is a classical problem in statistics and has also found new applications in machine learning. In the experimental design problem, the aim is to estimate an unknown vector x in m-dimensions from linear measurements where a Gaussian noise is introduced in each measurement. The goal is to pick k out of the given … Read more

Approximation algorithms for the covering-type k-violation linear program

We study the covering-type k-violation linear program where at most $k$ of the constraints can be violated. This problem is formulated as a mixed integer program and known to be strongly NP-hard. In this paper, we present a simple (k+1)-approximation algorithm using a natural LP relaxation. We also show that the integrality gap of the … Read more

The forwarder planning problem in a two-echelon network

This paper is motivated by the case of a forwarder in dealing with inland transportation planning from a seaport, where inbound containers from the sea are filled with pallets, which have different destinations in the landside. Although this forwarder does not have or control any vehicle, he is required to plan the assignment of containers … Read more

Computation of exact bootstrap confidence intervals: complexity and deterministic algorithms

The bootstrap is a nonparametric approach for calculating quantities, such as confidence intervals, directly from data. Since calculating exact bootstrap quantities is believed to be intractable, randomized resampling algorithms are traditionally used. Motivated by the fact that the variability from randomization can lead to inaccurate outputs, we propose a deterministic approach. First, we establish several … Read more

Planar Maximum Coverage Location Problem with Partial Coverage and General Spatial Representation of Demand and Service Zones

We introduce a new generalization of the classical planar maximum coverage location problem (PMCLP) in which demand zones and service zone of each facility are represented by spatial objects such as circles, polygons, etc., and are allowed to be located anywhere in a continuous plane. In addition, we allow partial coverage in its true sense, … Read more

An improved approximation algorithm for the covering 0-1 integer program

We present an improved approximation algorithm for the covering 0-1 integer program (CIP), a well-known problem as a natural generalization of the set cover problem. Our algorithm uses a primal-dual algorithm for CIP by Fujito (2004) as a subroutine and achieves an approximation ratio of (f- (f-1)/m) when m is greater than or equal to … Read more

Toward breaking the curse of dimensionality: an FPTAS for stochastic dynamic programs with multidimensional action and scalar state

We propose a Fully Polynomial-Time Approximation Scheme (FPTAS) for stochastic dynamic programs with multidimensional action, scalar state, convex costs and linear state transition function. The action spaces are polyhedral and described by parametric linear programs. This type of problems finds applications in the area of optimal planning under uncertainty, and can be thought of as … Read more

Disruption Recovery at Airports: Integer Programming Formulations and Polynomial time algorithms

We study disruptions at a major airport. Disruptions could be caused by bad weather, for example. Our study is from the perspective of the airport, the air services provider (such as air traffic control) and the travelling public, rather than from the perspective of a single airline. Disruptions cause flights to be subjected to ground … Read more

Size Matters: Cardinality-Constrained Clustering and Outlier Detection via Conic Optimization

Plain vanilla K-means clustering is prone to produce unbalanced clusters and suffers from outlier sensitivity. To mitigate both shortcomings, we formulate a joint outlier-detection and clustering problem, which assigns a prescribed number of datapoints to an auxiliary outlier cluster and performs cardinality-constrained K-means clustering on the residual dataset. We cast this problem as a mixed-integer … Read more