Optimizing the Layout of Proportional Symbol Maps: Polyhedra and Computation

Proportional symbol maps are a cartographic tool to assist in the visualization and analysis of quantitative data associated with specific locations, such as earthquake magnitudes, oil well production, and temperature at weather stations. As the name suggests, symbol sizes are proportional to the magnitude of the physical quantities that they represent. We present two novel … Read more

New Lower Bounds for the Vehicle Routing Problem with Simultaneous Pickup and Delivery

This work deals with the Vehicle Routing Problem with Simultaneous Pickup and Delivery (VRPSPD). We propose undirected and directed two-commodity flow formulations, which are based on the one developed by Baldacci, Hadjiconstantinou and Mingozzi for the Capacitated Vehicle Routing Problem. These new formulations are theoretically compared with the one-commodity flow formulation proposed by Dell’Amico, Righini … Read more

Benders decomposition for the hop-constrainted survivable network design problem

Given a graph with nonnegative edge weights and a set of pairs of nodes Q, we study the problem of constructing a minimum weight set of edges so that the induced subgraph contains at least K edge-disjoint paths containing at most L edges between each pair in Q. Using the layered representation introduced by Gouveia, … Read more

An exact approach to the problem of extracting an embedded network matrix

We study the problem of detecting a maximum embedded network submatrix in a {-1,0,+1}-matrix. Our aim is to solve the problem to optimality. We introduce a 0-1 integer linear formulation for this problem based on its representation over a signed graph. A polyhedral study is presented and a branch-and-cut algorithm is described for finding an … Read more

The Mcf-Separator – Detecting and Exploiting Multi-Commodity Flow Structures in MIPs

Given a general mixed integer program (MIP), we automatically detect block structures in the constraint matrix together with the coupling by capacity constraints arising from multi-commodity flow formulations. We identify the underlying graph and generate cutting planes based on cuts in the detected network. Our implementation adds a separator to the branch-and-cut libraries of Scip … Read more

An Improved Branch-and-Bound Method for Maximum Monomial Agreement

The NP-hard Maximum Monomial Agreement (MMA) problem consists of finding a single logical conjunction that best fits a weighted dataset of “positive” and “negative” binary vectors. Computing classifiers using boosting methods involves a maximum agreement subproblem at each iteration, although such subproblems are typically solved by heuristic methods. Here, we describe an exact branch and … Read more

Solving Large Steiner Triple Covering Problems

Computing the 1-width of the incidence matrix of a Steiner Triple System gives rise to small set covering instances that provide a computational challenge for integer programming techniques. One major source of difficulty for instances of this family is their highly symmetric structure, which impairs the performance of most branch-and-bound algorithms. The largest instance in … Read more

A Branch-and-Cut-and-Price Algorithm for Vertex-Biconnectivity Augmentation

In this paper, the first approach for solving the vertex-biconnectivity augmentation problem (V2AUG) to optimality is proposed. Given a spanning subgraph of an edge-weighted graph, we search for the cheapest subset of edges to augment this subgraph in order to make it vertex-biconnected. The problem is reduced to the augmentation of the corresponding block-cut tree, … Read more

Valid inequalities and Branch-and-Cut for the Clique Pricing Problem

Motivated by an application in highway pricing, we consider the problem that consists in setting profit-maximizing tolls on a clique subset of a multicommodity transportation network. Following a proof that clique pricing is NP-hard, we propose strong valid inequalities, some of which define facets of the 2-commodity polyhedron. The numerical efficiency of these inequalities is … Read more

Improved strategies for branching on general disjunctions

Within the context of solving Mixed-Integer Linear Programs by a Branch-and-Cut algorithm, we propose a new strategy for branching. Computational experiments show that, on the majority of our test instances, this approach enumerates fewer nodes than traditional branching. On average, on instances that contain both integer and continuous variables the number of nodes in the … Read more