Integer programming, Barvinok’s counting algorithm and Gomory relaxations
We propose an algorithm based on Barvinok’s counting algorithm for P -> max {c’x | Ax
We propose an algorithm based on Barvinok’s counting algorithm for P -> max {c’x | Ax
Virtual private networks (VPN) are often used to distribute live content, such as video or audio streams, from a single source to a large number of destinations. Streaming caches or splitters are deployed in these multicast networks to allow content distribution without overloading the network. In this paper, we consider two combinatorial optimization problems that … Read more
The hub location problem with single assignment is the problem of locating hubs and assigning the terminal nodes to hubs in order to minimize the cost of hub installation and the cost of routing the traffic in the network. There may also be capacity restrictions on the amount of traffic that can transit by hubs. … Read more
Given $A\in Z^{m\times n}$ and $b\in Z^m$, we consider the integer program $\max \{c’x\vert Ax=b;x\in N^n\}$ and provide an equivalent and explicit linear program $\max \{\widehat{c}’q\vert M q=r;q\geq 0\}$, where $M,r,\widehat{c}$ are easily obtained from $A,b,c$ with no calculation. We also provide an explicit algebraic characterization of the integer hull of the convex polytope $P=\{x\in\R^n\vert … Read more
We consider the integer program $\max \{c’ x\,|\,Ax=b,x\in N^n\}$. A formal parallel between linear programming and continuous integration on one side, and discrete summation on the other side, shows that a natural duality for integer programs can be derived from the $Z$-transform and Brion and Vergne’s counting formula. Along the same lines, we also provide … Read more
Let $P$ be an optimization problem, and let $A$ be an approximation algorithm for $P$. The domination ratio $\domr(A,n)$ is the maximum real $q$ such that the solution $x(I)$ obtained by $A$ for any instance $I$ of $P$ of size $n$ is not worse than at least a fraction $q$ of the feasible solutions of … Read more
In this paper, we describe a methodology for the analysis of greedy randomized adaptive search procedures (GRASP). GRASP is a metaheuristic for combinatorial optimization. It usually consists of a construction procedure based on a greedy randomized algorithm and a local search. Hybrid approaches of GRASP with path-relinking developed for the 3-index assignment problem (AP3) and … Read more
This paper addresses recent advances and application of hybridizations of greedy randomized adaptive search procedures (GRASP) and path-relinking. We present a template for implementing path-relinking as an intensification procedure for GRASP. Enhancements to the procedure, recently described in the literature, are reviewed. The effectiveness of the procedure is illustrated experimentally. CitationAT&T Labs Research Technical Report, … Read more
A nonincreasing sequence of positive integers $\langle m_1,m_2,\cdots,m_k \rangle$ is said to be {\em $n$-realizable\/} if the set $I_n=\{ 1,2,\cdots,n\}$ can be partitioned into $k$ mutually disjoint subsets $S_1,S_2,\cdots, S_k$ such that $\sum\limits_{x\in S_i}x=m_i$ for each $1\le i\le k$. In this paper, we will prove that a nonincreasing sequence of positive integers $\langle m_1,m_2,\cdots,m_k\rangle$ is … Read more
Given a directed graph G(V,A), the p-Median problem consists of determining p nodes (the median nodes) minimizing the total distance from the other nodes of the graph. We present a Branch-and-Cut algorithm yielding provably good solutions for instances up to 3795 nodes (14,402,025 variables). Key ingredients of our approach are: lagrangian relaxation, a simple procedure … Read more