Scalable Algorithms for the Sparse Ridge Regression

Sparse regression and variable selection for large-scale data have been rapidly developed in the past decades. This work focuses on sparse ridge regression, which enforces the sparsity by use of the L0 norm. We first prove that the continuous relaxation of the mixed integer second order conic (MISOC) reformulation using perspective formulation is equivalent to … Read more

An Approximation Algorithm for Vehicle Routing with Compatibility Constraints

We study a multiple-vehicle routing problem with a minimum makespan objective and compatibility constraints. We provide an approximation algorithm and a nearly-matching hardness of approximation result. We also provide computational results on benchmark instances with diverse sizes showing that the proposed algorithm (i) has a good empirical approximation factor, (ii) runs in a short amount … Read more

The optimal design of low-latency virtual backbones

Two nodes of a wireless network may not be able to communicate with each other directly perhaps due to obstacles or insufficient signal strength. This necessitates the use of intermediate nodes to relay information. Often, one designates a (preferably small) subset of them to relay these messages (i.e., to serve as a virtual backbone for … Read more

The Synthesis Problem of Decentralized Energy Systems is strongly NP-hard

We analyze the computational complexity of the synthesis problem of decentralized energy systems. This synthesis problem consists of combining various types of energy conversion units and determining their sizing as well as operations in order to meet time-varying energy demands while maximizing an objective function, e.g., the net present value. In this paper, we prove … Read more

Optimal switching sequence for switched linear systems

We study the following optimization problem over a dynamical system that consists of several linear subsystems: Given a finite set of n-by-n matrices and an n-dimensional vector, find a sequence of K matrices, each chosen from the given set of matrices, to maximize a convex function over the product of the K matrices and the … Read more

The running intersection relaxation of the multilinear polytope

The multilinear polytope MP_G of a hypergraph G is the convex hull of a set of binary points satisfying a collection of multilinear equations. We introduce the running-intersection inequalities, a new class of facet-defining inequalities for the multilinear polytope. Accordingly, we define a new polyhedral relaxation of MP_G referred to as the running-intersection relaxation and … Read more

A new approximation algorithm for unrelated parallel machine scheduling problem with release dates

In this research, we consider the unrelated parallel machine scheduling problem with release dates. The goal of this scheduling problem is to find an optimal job assignment with minimal sum of weighted completion times. As it is demonstrated in the present paper, this problem is NP-hard in the strong sense. Albeit the computational complexity, which … Read more

The Stable Set Problem: Clique and Nodal Inequalities Revisited

The stable set problem is a fundamental combinatorial optimisation problem, that is known to be very difficult in both theory and practice. Some of the solution algorithms in the literature are based on 0-1 linear programming formulations. We examine an entire family of such formulations, based on so-called clique and nodal inequalities. As well as … Read more

An Improved Flow-based Formulation and Reduction Principles for the Minimum Connectivity Inference Problem

The Minimum Connectivity Inference (MCI) problem represents an NP-hard generalisation of the well-known minimum spanning tree problem and has been studied in different fields of research independently. Let an undirected complete graph and finitely many subsets (clusters) of its vertex set be given. Then, the MCI problem is to find a minimal subset of edges … Read more