Min-Max Theorems Related to Geometric Representations of Graphs and their SDPs

Lovasz proved a nonlinear identity relating the theta number of a graph to its smallest radius hypersphere embedding where each edge has unit length. We use this identity and its generalizations to establish min-max theorems and to translate results related to one of the graph invariants above to the other. Classical concepts in tensegrity theory … Read more

SpeeDP: A new algorithm to compute the SDP relaxations of Max-Cut for very large graphs

We consider low-rank semidefinite programming (LRSDP) relaxations of unconstrained {-1,1} quadratic problems (or, equivalently, of Max-Cut problems) that can be formulated as the nonconvex nonlinear programming problem of minimizing a quadratic function subject to separable quadratic equality constraints. We prove the equivalence of the LRSDP problem with the unconstrained minimization of a new merit function … Read more

On the Complexity of Non-Overlapping Multivariate Marginal Bounds for Probabilistic Combinatorial Optimization Problems

Given a combinatorial optimization problem with an arbitrary partition of the set of random objective coefficients, we evaluate the tightest possible bound on the expected optimal value for joint distributions consistent with the given multivariate marginals of the subsets in the partition. For univariate marginals, this bound was first proposed by Meilijson and Nadas (Journal … Read more

Facets of the minimum-adjacency vertex coloring polytope

In this work we study a particular way of dealing with interference in combinatorial optimization models representing wireless communication networks. In a typical wireless network, co-channel interference occurs whenever two overlapping antennas use the same frequency channel, and a less critical interference is generated whenever two overlapping antennas use adjacent channels. This motivates the formulation … Read more

Burer’s Key Assumption for Semidefinite and Doubly Nonnegative Relaxations

Burer has shown that completely positive relaxations of nonconvex quadratic programs with nonnegative and binary variables are exact when the binary variables satisfy a so-called key assumption. Here we show that introducing binary variables to obtain an equivalent problem that satisfies the key assumption will not improve the semidefinite relaxation, and only marginally improve the … Read more

A polynomial case of cardinality constrained quadratic optimization problem

We investigate in this paper a fixed parameter polynomial algorithm for the cardinality constrained quadratic optimization problem, which is NP-hard in general. More specifically, we prove that, given a problem of size $n$, the number of decision variables, and $s$, the cardinality, if, for some $0

Randomized heuristics for the regenerator location problem

Telecommunication systems make use of optical signals to transmit information. The strength of a signal in an optical network deteriorates and loses power as it gets farther from the source, mainly due to attenuation. Therefore, to enable the signal to arrive at its intended destination with good quality, it is necessary to regenerate it periodically … Read more

Semidefinite Relaxations of Ordering Problems

Ordering problems assign weights to each ordering and ask to find an ordering of maximum weight. We consider problems where the cost function is either linear or quadratic. In the first case, there is a given profit if the element u is before v in the ordering. In the second case, the profit depends on … Read more

On semidefinite programming relaxations of maximum k-section

We derive a new semidefinite programming bound for the maximum k-section problem. For k=2 (i.e. for maximum bisection), the new bound is least as strong as the well-known bound by Frieze and Jerrum [A. Frieze and M. Jerrum. Improved Approximation Algorithms for MAX k-CUT and MAX BISECTION. Algorithmica, 18(1): 67-81, 1997]. For k > 2 … Read more

Relaxations of combinatorial problems via association schemes

In this chapter we study a class of semidefinite programming relaxations of combinatorial problems. These relaxations are derived using the theory of coherent configurations in algebraic combinatorics. Citation Draft version of a chapter for “Handbook on SDP II” (M. Anjos and J. Lasserre, eds.), Springer. Article Download View Relaxations of combinatorial problems via association schemes