New facets for the consecutive ones polytope

A 0/1 matrix has the Consecutive Ones Property if a permutation of its columns exists such that the ones appear consecutively in each row. In many applications, one has to find a matrix having the consecutive ones property and optimizing a linear objective function. For this problem, literature proposes, among other approaches, an Integer Linear … Read more

The running intersection relaxation of the multilinear polytope

The multilinear polytope MP_G of a hypergraph G is the convex hull of a set of binary points satisfying a collection of multilinear equations. We introduce the running-intersection inequalities, a new class of facet-defining inequalities for the multilinear polytope. Accordingly, we define a new polyhedral relaxation of MP_G referred to as the running-intersection relaxation and … Read more

An algorithm to compute the Hoffman constant of a system of linear constraints

We propose a combinatorial algorithm to compute the Hoffman constant of a system of linear equations and inequalities. The algorithm is based on a characterization of the Hoffman constant as the largest of a finite canonical collection of easy-to-compute Hoffman constants. Our algorithm and characterization extend to the more general context where some of the … Read more

Distributionally Robust Linear and Discrete Optimization with Marginals

In this paper, we study the class of linear and discrete optimization problems in which the objective coefficients are chosen randomly from a distribution, and the goal is to evaluate robust bounds on the expected optimal value as well as the marginal distribution of the optimal solution. The set of joint distributions is assumed to … Read more

Parity Polytopes and Binarization

We consider generalizations of parity polytopes whose variables, in addition to a parity constraint, satisfy certain ordering constraints. More precisely, the variable domain is partitioned into k contiguous groups, and within each group, we require the variables to be sorted nonincreasingly. Such constraints are used to break symmetry after replacing an integer variable by a … Read more

Can cut generating functions be good and efficient?

Making cut generating functions (CGFs) computationally viable is a central question in modern integer programming research. One would like to nd CGFs that are simultaneously good, i.e., there are good guarantees for the cutting planes they generate, and ecient, meaning that the values of the CGFs can be computed cheaply (with procedures that have some … Read more

The Clique Problem with Multiple-Choice Constraints under a Cycle-Free Dependency Graph

The clique problem with multiple-choice constraints (CPMC) represents a very common substructure in many real-world applications, for example scheduling problems with precedence constraints. It consists in finding a clique in a graph whose nodes are partitioned into subsets, such that exactly one node from each subset is chosen. Even though we can show that (CPMC) … Read more

Staircase Compatibility and its Applications in Scheduling and Piecewise Linearization

We consider the clique problem with multiple-choice constraints (CPMC) and characterize a case where it is possible to give an efficient description of the convex hull of its feasible solutions. This new special case, which we call staircase compatibility, generalizes common properties in several applications and allows for a linear description of the integer feasible … Read more

Facets from Gadgets

We present a new tool for generating cutting planes for NP-hard combinatorial optimisation problems. It is based on the concept of gadgets — small subproblems that are “glued” together to form hard problems — which we borrow from the literature on computational complexity. Using gadgets, we are able to derive huge (exponentially large) new families … Read more