A Conic Programming Approach to Generalized Tchebycheff Inequalities

Consider the problem of finding optimal bounds on the expected value of piece-wise polynomials over all measures with a given set of moments. We show that this problem can be studied within the framework of conic programming. Relying on a key approximation result for conic programming, we show that these bounds can be numerically computed … Read more

Using selective orthonormalization to update the analytic center after the addition of multiple cuts

We study the issue of updating the analytic center after multiple cutting planes have been added through the analytic center of the current polytope in Euclidean n-space. This is an important issue that arises at every `stage’ in a cutting plane algorithm. If q cuts are to be added, with q no larger than n, … Read more

”Cone-Free” Primal-Dual Path-Following and Potential Reduction Polynomial Time Interior-Point Methods

We present a framework for designing and analyzing primal-dual interior-point methods for convex optimization. We assume that a self-concordant barrier for the convex domain of interest and the Legendre transformation of the barrier are both available to us. We directly apply the theory and techniques of interior-point methods to the given good formulation of the … Read more

A D-Induced Duality and Its Applications

This paper attempts to extend the notion of duality for convex cones, by basing it on a pre-described conic ordering and a fixed bilinear mapping. This is an extension of the standard definition of dual cones, in the sense that the {\em nonnegativity}\/ of the inner-product is replaced by a pre-specified conic ordering, defined by … Read more

A primal affine-scaling algorithm for constrained convex programs

The affine-scaling algorithm was initially developed for linear programming problems. Its extension to problems with a nonlinear objective performs at each iteration a scaling followed by a line search along the steepest descent direction. In this paper we prove that any accumulation point generated by this algorithm when applied to a convex function is an … Read more

The Trust Region Subproblem and Semidefinite Programming

The trust region subproblem (the minimization of a quadratic objective subject to one quadratic constraint and denoted TRS) has many applications in diverse areas, e.g. function minimization, sequential quadratic programming, regularization, ridge regression, and discrete optimization. In particular, it determines the step in trust region algorithms for function minimization. Trust region algorithms are popular for … Read more

Computation of Minimum Volume Covering Ellipsoids

We present a practical algorithm for computing the minimum volume n-dimensional ellipsoid that must contain m given points a_1, …, a_m \in R^n. This convex constrained problem arises in a variety of applied computational settings, particularly in data mining and robust statistics. Its structure makes it particularly amenable to solution by interior-point methods, and it … Read more

Limiting behavior of the central path in semidefinite optimization

It was recently shown that, unlike in linear optimization, the central path in semidefinite optimization (SDO) does not converge to the analytic center of the optimal set in general. In this paper we analyze the limiting behavior of the central path to explain this unexpected phenomenon. This is done by deriving a new necessary and … Read more

Characterization of the limit point of the central path in semidefinite programming

In linear programming, the central path is known to converge to the analytic center of the set of optimal solutions. Recently, it has been shown that this is not necessarily true for linear semidefinite programming in the absence of strict complementarity. The present paper deals with the formulation of a convex problem whose solution defines … Read more

SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB — User’s Guide

SOSTOOLS is a free MATLAB toolbox for formulating and solving sum of squares (SOS) optimization programs. It uses a simple notation and a flexible and intuitive high-level user interface to specify the SOS programs. Currently these are solved using SeDuMi, a well-known semidefinite programming solver, while SOSTOOLS handles internally all the necessary reformulations and data … Read more