On the Convergence of Projected Alternating Maximization for Equitable and Optimal Transport

This paper studies the equitable and optimal transport (EOT) problem, which has many applications such as fair division problems and optimal transport with multiple agents etc. In the discrete distributions case, the EOT problem can be formulated as a linear program (LP). Since this LP is prohibitively large for general LP solvers, Scetbon \etal \cite{scetbon2021equitable} … Read more

Log-domain interior-point methods for convex quadratic programming

Applying an interior-point method to the central-path conditions is a widely used approach for solving quadratic programs. Reformulating these conditions in the log-domain is a natural variation on this approach that to our knowledge is previously unstudied. In this paper, we analyze log-domain interior-point methods and prove their polynomial-time convergence. We also prove that they … Read more

Adaptive Sampling Quasi-Newton Methods for Zeroth-Order Stochastic Optimization

We consider unconstrained stochastic optimization problems with no available gradient information. Such problems arise in settings from derivative-free simulation optimization to reinforcement learning. We propose an adaptive sampling quasi-Newton method where we estimate the gradients of a stochastic function using finite differences within a common random number framework. We develop modified versions of a norm … Read more

A Local MM Subspace Method for Solving Constrained Variational Problems in Image Recovery

This article introduces a new Penalized Majorization-Minimization Subspace algorithm (P-MMS) for solving smooth, constrained optimization problems. In short, our approach consists of embedding a subspace algorithm in an inexact exterior penalty procedure. The subspace strategy, combined with a Majoration-Minimization step-size search, takes great advantage of the smoothness of the penalized cost function, while the penalty … Read more

A simple Introduction to higher order liftings for binary problems

A short, simple, and self-contained proof is presented showing that $n$-th lifting for the max-cut-polytope is exact. The proof re-derives the known observations that the max-cut-polytope is the projection of a higher-dimensional regular simplex and that this simplex coincides with the $n$-th semidefinite lifting. An extension to reduce the dimension of higher order liftings and … Read more

SABRINA: A Stochastic Subspace Majorization-Minimization Algorithm

A wide class of problems involves the minimization of a coercive and differentiable function $F$ on $\mathbb{R}^N$ whose gradient cannot be evaluated in an exact manner. In such context, many existing convergence results from standard gradient-based optimization literature cannot be directly applied and robustness to errors in the gradient is not necessarily guaranteed. This work … Read more

A Derivation of Nesterov’s Accelerated Gradient Algorithm from Optimal Control Theory

Nesterov’s accelerated gradient algorithm is derived from first principles. The first principles are founded on the recently-developed optimal control theory for optimization. The necessary conditions for optimal control generate a controllable dynamical system for accelerated optimization. Stabilizing this system via a control Lyapunov function generates an ordinary differential equation. An Euler discretization of the differential … Read more

A New Insight on Augmented Lagrangian Method with Applications in Machine Learning

By exploiting double-penalty terms for the primal subproblem, we develop a novel relaxed augmented Lagrangian method for solving a family of convex optimization problems subject to equality or inequality constraints. This new method is then extended to solve a general multi-block separable convex optimization problem, and two related primal-dual hybrid gradient algorithms are also discussed. … Read more

Accelerated Stochastic Peaceman-Rachford Method for Empirical Risk Minimization

This work is devoted to studying an Accelerated Stochastic Peaceman-Rachford Splitting Method (AS-PRSM) for solving a family of structural empirical risk minimization problems. The objective function to be optimized is the sum of a possibly nonsmooth convex function and a finite-sum of smooth convex component functions. The smooth subproblem in AS-PRSM is solved by a stochastic gradient method using variance reduction … Read more

Exact Convergence Rates of Alternating Projections for Nontransversal Intersections

We study the exact convergence rate of the alternating projection method for the nontransversal intersection of a semialgebraic set and a linear subspace. If the linear subspace is a line, the exact rates are expressed by multiplicities of the defining polynomials of the semialgebraic set, or related power series. Our methods are also applied to … Read more