Tail bounds for stochastic approximation

Stochastic-approximation gradient methods are attractive for large-scale convex optimization because they offer inexpensive iterations. They are especially popular in data-fitting and machine-learning applications where the data arrives in a continuous stream, or it is necessary to minimize large sums of functions. It is known that by appropriately decreasing the variance of the error at each … Read more

On the use of semi-closed sets and functions in convex analysis

The main aim of this short note is to show that the sub\-differentiability and duality results established by Laghdir (2005), Laghdir and Benabbou (2007), and Alimohammady \emph{et al.}\ (2011), stated in Fréchet spaces, are consequences of the corresponding known results using Moreau–Rockafellar type conditions. ArticleDownload View PDF

A splitting minimization method on geodesic spaces

We present in this paper the alternating minimization method on CAT(0) spaces for solving unconstraints convex optimization problems. Under the assumption that the function being minimize is convex, we prove that the sequence generated by our algorithm converges to a minimize point. The results presented in this paper are the first ones of this type … Read more

Projection: A Unified Approach to Semi-Infinite Linear Programs and Duality in Convex Programming

Fourier-Motzkin elimination is a projection algorithm for solving finite linear programs. We extend Fourier-Motzkin elimination to semi-infinite linear programs which are linear programs with finitely many variables and infinitely many constraints. Applying projection leads to new characterizations of important properties for primal-dual pairs of semi-infinite programs such as zero duality gap, feasibility, boundedness, and solvability. … Read more

A Perturbed Sums of Squares Theorem for Polynomial Optimization and its Applications

We consider a property of positive polynomials on a compact set with a small perturbation. When applied to a Polynomial Optimization Problem (POP), the property implies that the optimal value of the corresponding SemiDefinite Programming (SDP) relaxation with sufficiently large relaxation order is bounded from below by $(f^¥ast – ¥epsilon)$ and from above by $f^¥ast … Read more

Gradient methods for convex minimization: better rates under weaker conditions

The convergence behavior of gradient methods for minimizing convex differentiable functions is one of the core questions in convex optimization. This paper shows that their well-known complexities can be achieved under conditions weaker than the commonly assumed ones. We relax the common gradient Lipschitz-continuity condition and strong convexity condition to ones that hold only over … Read more

On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems

We present two modified versions of the primal-dual splitting algorithm relying on forward-backward splitting proposed in [21] for solving monotone inclusion problems. Under strong monotonicity assumptions for some of the operators involved we obtain for the sequences of iterates that approach the solution orders of convergence of ${\cal {O}}(\frac{1}{n})$ and ${\cal {O}}(\omega^n)$, for $\omega \in … Read more

A generalization of the Lowner-John’s ellipsoid theorem

We address the following generalization $P$ of the Lowner-John’s ellipsoid problem. Given a (non necessarily convex) compact set $K\subset R^n$ and an even integer $d, find an homogeneous polynomial $g$ of degree $d$ such that $K\subset G:=\{x:g(x)\leq1\}$ and $G$ has minimum volume among all such sets. We show that $P$ is a convex optimization problem … Read more

Strong duality in conic linear programming: facial reduction and extended duals

The facial reduction algorithm of Borwein and Wolkowicz and the extended dual of Ramana provide a strong dual for the conic linear program (P) \sup { | Ax \leq_K b} in the absence of any constraint qualification. The facial reduction algorithm solves a sequence of auxiliary optimization problems to obtain such a dual. Ramana’s dual … Read more

Distributionally Robust Convex Optimization

Distributionally robust optimization is a paradigm for decision-making under uncertainty where the uncertain problem data is governed by a probability distribution that is itself subject to uncertainty. The distribution is then assumed to belong to an ambiguity set comprising all distributions that are compatible with the decision maker’s prior information. In this paper, we propose … Read more