An Interior-Point Method for Large Scale Network Utility Maximization

We describe a specialized truncated-Newton primal-dual interior-point method that solves large scale network utility maximization problems, with concave utility functions, efficiently and reliably. Our method is not decentralized, but easily scales to problems with a million flows and links. We compare our method to a standard decentralized algorithm based on dual decomposition, and show by … Read more

Graph Implementations for Nonsmooth Convex Programs

We describe graph implementations, a generic method for representing a convex function via its epigraph, described in a disciplined convex programming framework. This simple and natural idea allows a very wide variety of smooth and nonsmooth convex programs to be easily specified and efficiently solved, using interior-point methods for smooth or cone convex programs. CitationTo … Read more

SDLS: a Matlab package for solving conic least-squares problems

This document is an introduction to the Matlab package SDLS (Semi-Definite Least-Squares) for solving least-squares problems over convex symmetric cones. The package is shortly presented through the addressed problem, a sketch of the implemented algorithm, the syntax and calling sequences, a simple numerical example and some more advanced features. The implemented method consists in solving … Read more

A New Class of Self-Concordant Barriers from Separable Spectral Functions

Given a separable strongly self-concordant function f:Rn -> R, we show the associated spectral function F(X)= (foL)(X) is also strongly self-concordant function. In addition, there is a universal constant O such that, if f(x) is separable self-concordant barrier then O^2F(X) is a self-concordant barrier. We estimate that for the universal constant we have O

The extremal volume ellipsoids of convex bodies, their symmetry properties, and their determination in some special cases

A convex body K has associated with it a unique circumscribed ellipsoid CE(K) with minimum volume, and a unique inscribed ellipsoid IE(K) with maximum volume. We first give a unified, modern exposition of the basic theory of these extremal ellipsoids using the semi-infinite programming approach pioneered by Fritz John in his seminal 1948 paper. We … Read more

Semidefinite Programming for Gradient and Hessian Computation in Maximum Entropy Estimation

We consider the classical problem of estimating a density on $[0,1]$ via some maximum entropy criterion. For solving this convex optimization problem with algorithms using first-order or second-order methods, at each iteration one has to compute (or at least approximate) moments of some measure with a density on $[0,1]$, to obtain gradient and Hessian data. … Read more

Nonparametric Estimation via Convex Programming

In the paper, we focus primarily on the problem of recovering a linear form g’*x of unknown “signal” x known to belong to a given convex compact set X in R^n from N independent realizations of a random variable taking values in a finite set, the distribution p of the variable being affinely parameterized by … Read more

Exact duality for optimization over symmetric cones

We present a strong duality theory for optimization problems over symmetric cones without assuming any constraint qualification. We show important complexity implications of the result to semidefinite and second order conic optimization. The result is an application of Borwein and Wolkowicz’s facial reduction procedure to express the minimal cone. We use Pataki’s simplified analysis and … Read more

The Exact Feasibility of Randomized Solutions of Robust Convex Programs

Robust optimization programs are hard to solve even when the constraints are convex. In previous contributions, it has been shown that approximately robust solutions (i.e. solutions feasible for all constraints but a small fraction of them) to convex programs can be obtained at low computational cost through constraints randomization. In this paper, we establish new … Read more

Hybrid extragradient proximal algorithm coupled with parametric approximation and penalty/barrier methods

In this paper we study the hybrid extragradient method coupled with approximation and penalty schemes for minimization problems. Under certain hypotheses, that include for example the case of Tikhonov regularization, we prove convergence of the method to the solution set of our minimization problem. When we use schemes of penalization or barrier we can show … Read more