Dini Derivative and a Characterization for Lipschitz and Convex Functions on Riemannian Manifolds

Dini derivative on Riemannian manifold setting is studied in this paper. In addition, a characterization for Lipschitz and convex functions defined on Riemannian manifolds and sufficient optimality conditions for constraint optimization problems in terms of the Dini derivative are given. ArticleDownload View PDF

Consistency of robust portfolio estimators

It is a matter of common knowledge that traditional Markowitz optimization based on sample means and covariances performs poorly in practice. For this reason, diverse attempts were made to improve performance of portfolio optimization. In this paper, we investigate three popular portfolio selection models built upon classical mean-variance theory. The first model is an extension … Read more

PROXIMAL THRESHOLDING ALGORITHM FOR MINIMIZATION OVER ORTHONORMAL BASES

The notion of soft thresholding plays a central role in problems from various areas of applied mathematics, in which the ideal solution is known to possess a sparse decomposition in some orthonormal basis. Using convex-analytical tools, we extend this notion to that of proximal thresholding and investigate its properties, providing in particular several characterizations of … Read more

An efficient method to compute traffic assignment problems with elastic demands

The traffic assignment problem with elastic demands can be formulated as an optimization problem, whose objective is sum of a congestion function and a disutility function. We propose to use a variant of the Analytic Center Cutting Plane Method to solve this problem. We test the method on instances with different congestion functions (linear with … Read more

Computing Minimum Volume Enclosing Axis-Aligned Ellipsoids

Given a set of points $\cS = \{x^1,\ldots,x^m\} \subset \R^n$ and $\eps > 0$, we propose and analyze an algorithm for the problem of computing a $(1 + \eps)$-approximation to the the minimum volume axis-aligned ellipsoid enclosing $\cS$. We establish that our algorithm is polynomial for fixed $\eps$. In addition, the algorithm returns a small … Read more

Target following algorithms for semidefinite programming

We present a target-following framework for semidefinite programming, which generalizes the target-following framework for linear programming. We use this framework to build weighted path-following interior-point algorithms of three distinct flavors: short-step, predictor-corrector, and large-update. These algorithms have worse-case iteration bounds that parallel their counterparts in linear programming. We further consider the problem of finding analytic … Read more

Mosco stability of proximal mappings in reflexive Banach spaces

In this paper we establish criteria for the stability of the proximal mapping \textrm{Prox} $_{\varphi }^{f}=(\partial \varphi +\partial f)^{-1}$ associated to the proper lower semicontinuous convex functions $\varphi $ and $f$ on a reflexive Banach space $X.$ We prove that, under certain conditions, if the convex functions $\varphi _{n}$ converge in the sense of Mosco … Read more

Proximal Point Methods for Quasiconvex and Convex Functions With Bregman Distances

This paper generalizes the proximal point method using Bregman distances to solve convex and quasiconvex optimization problems on noncompact Hadamard manifolds. We will proved that the sequence generated by our method is well defined and converges to an optimal solution of the problem. Also, we obtain the same convergence properties for the classical proximal method, … Read more

Numerical Experiments with universal barrier functions for cones of Chebyshev systems

Based on previous explicit computations of universal barrier functions, we describe numerical experiments for solving certain classes of convex optimization problems. The comparison is given of the performance of the classical affine-scaling algorithm with similar algorithm based upon the universal barrier function CitationTo appear in “Computational Optimization and Applications”ArticleDownload View PDF

Generating and Measuring Instances of Hard Semidefinite Programs, SDP

Linear Programming, LP, problems with finite optimal value have a zero duality gap and a primal-dual strictly complementary optimal solution pair. On the other hand, there exists Semidefinite Programming, SDP, problems which have a nonzero duality gap (different primal and dual optimal values; not both infinite). The duality gap is assured to be zero if … Read more