About the Convexity of a Special Function on Hadamard Manifolds.

In this article we provide an erratum to Proposition 3.4 of E.A. Papa Quiroz and P.R. Oliveira. Proximal Point Methods for Quasiconvex and Convex Functions with Bregman Distances on Hadamard Manifolds, Journal of Convex Analysis 16 (2009), 49-69. More specifically, we prove that the function defined by the product of a fixed vector in the … Read more

A Scalarization Proximal Point Method for Quasiconvex Multiobjective Minimization

In this paper we propose a scalarization proximal point method to solve multiobjective unconstrained minimization problems with locally Lipschitz and quasiconvex vector functions. We prove, under natural assumptions, that the sequence generated by the method is well defined and converges globally to a Pareto-Clarke critical point. Our method may be seen as an extension, for … Read more

On the Maximal Extensions of Monotone Operators and Criteria for Maximality

Within a nonzero, real Banach space we study the problem of characterising a maximal extension of a monotone operator in terms of minimality properties of representative functions that are bounded by the Penot and Fitzpatrick functions. We single out a property of this space of representative functions that enable a very compact treatment of maximality … Read more

The inexact projected gradient method for quasiconvex vector optimization problems

Vector optimization problems are a generalization of multiobjective optimization in which the preference order is related to an arbitrary closed and convex cone, rather than the nonnegative octant. Due to its real life applications, it is important to have practical solution approaches for computing. In this work, we consider the inexact projected gradient-like method for … Read more

Accelerating block-decomposition first-order methods for solving composite saddle-point and two-player Nash equilibrium problems

This article considers the two-player composite Nash equilibrium (CNE) problem with a separable non-smooth part, which is known to include the composite saddle-point (CSP) problem as a special case. Due to its two-block structure, this problem can be solved by any algorithm belonging to the block-decomposition hybrid proximal-extragradient (BD-HPE) framework. The framework consists of a … Read more

On Equilibrium Problems Involving Strongly Pseudomonotone Bifunctions

We study equilibrium problems with strongly pseudomonotone bifunctions in real Hilbert spaces. We show the existence of a unique solution. We then propose a generalized strongly convergent projection method for equilibrium problems with strongly pseudomonotone bifunctions. The proposed method uses only one projection without requiring Lipschitz continuity. Application to variational inequalities is discussed. CitationInstitute of … Read more

A proximal technique for computing the Karcher mean of symmetric positive definite matrices

This paper presents a proximal point approach for computing the Riemannian or intrinsic Karcher mean of symmetric positive definite matrices. Our method derives from proximal point algorithm with Schur decomposition developed to compute minimum points of convex functions on symmetric positive definite matrices set when it is seen as a Hadamard manifold. The main idea … Read more

BILEVEL OPTIMIZATION AS A REGULARIZATION APPROACH TO PSEUDOMONOTONE EQUILIBRIUM PROBLEMS

We investigate some properties of an inexact proximal point method for pseudomonotone equilibrium problems in a real Hilbert space. Un- like monotone case, in pseudomonotone case, the regularized subprob- lems may not be strongly monotone, even not pseudomonotone. How- ever, every proximal trajectory weakly converges to the same limit, We use these properties to extend … Read more

A Newton-Fixed Point Homotopy Algorithm for Nonlinear Complementarity Problems with Generalized Monotonicity

In this paper has been considered probability-one global convergence of NFPH (Newton-Fixed Point Homotopy) algorithm for system of nonlinear equations and has been proposed a probability-one homotopy algorithm to solve a regularized smoothing equation for NCP with generalized monotonicity. Our results provide a theoretical basis to develop a new computational method for nonlinear equation systems … Read more

A Constructive Proof of the Existence of a Utility in Revealed Preference Theory

Within the context of the standard model of rationality within economic modelling we show the existence of a utility function that rationalises a demand correspondence, hence completely characterizes the associated preference structure, by taking a dense demand sample. This resolves the problem of revealed preferences under some very mild assumptions on the demand correspondence which … Read more