Scenario Consensus Algorithms for Solving Stochastic and Dynamic Problems

In transportation problems and in many other planning problems, there are important sources of uncertainty that must be addressed to find effective and efficient solutions. A common approach for solving these dynamic and stochastic problems is the Multiple Scenario Approach (MSA), that has been proved effective for transportation problems, but it does not provide flexibility … Read more

Combining Penalty-based and Gauss-Seidel Methods for solving Stochastic Mixed-Integer Problems

In this paper, we propose a novel decomposition approach for mixed-integer stochastic programming (SMIP) problems that is inspired by the combination of penalty-based Lagrangian and block Gauss-Seidel methods (PBGS). In this sense, PBGS is developed such that the inherent decomposable structure that SMIPs present can be exploited in a computationally efficient manner. The performance of … Read more

Combining Progressive Hedging with a Frank-Wolfe Method to Compute Lagrangian Dual Bounds in Stochastic Mixed-Integer Programming

We present a new primal-dual algorithm for computing the value of the Lagrangian dual of a stochastic mixed-integer program (SMIP) formed by relaxing its nonanticipativity constraints. The algorithm relies on the well-known progressive hedging method, but unlike previous progressive hedging approaches for SMIP, our algorithm can be shown to converge to the optimal Lagrangian dual … Read more

Nonanticipative duality, relaxations, and formulations for chance-constrained stochastic programs

We propose two new Lagrangian dual problems for chance-constrained stochastic programs based on relaxing nonanticipativity constraints. We compare the strength of the proposed dual bounds and demonstrate that they are superior to the bound obtained from the continuous relaxation of a standard mixed-integer programming (MIP) formulation. For a given dual solution, the associated Lagrangian relaxation … Read more

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions

In this paper, we apply the quadratic penalization technique to derive strong Lagrangian duality property for an inequality constrained invex program. Our results extend and improve the corresponding results in the literature. Citation Bazara, M. S. and Shetty, C. M., Nonlinear Programming Theory and Algorithms, John Wiley \& Sons, New York, 1979. Ben-Israel, A. and … Read more

On a class of minimax stochastic programs

For a particular class of minimax stochastic programming models, we show that the problem can be equivalently reformulated into a standard stochastic programming problem. This permits the direct use of standard decomposition and sampling methods developed for stochastic programming. We also show that this class of minimax stochastic programs subsumes a large family of mean-risk … Read more