Solving nonsmooth convex optimization with complexity (\eps^{-1/2})$

This paper describes an algorithm for solving structured nonsmooth convex optimization problems using OSGA, a first-order method with the complexity $O(\eps^{-2})$ for Lipschitz continuous nonsmooth problems and $O(\eps^{-1/2})$ for smooth problems with Lipschitz continuous gradient. If the nonsmoothness of the problem is manifested in a structured way, we reformulate the problem in a form that … Read more

First order optimality conditions for mathematical programs with second-order cone complementarity constraints

In this paper we consider a mathematical program with second-order cone complementarity constraints (SOCMPCC). The SOCMPCC generalizes the mathematical program with complementarity constraints (MPCC) in replacing the set of nonnegative reals by a second-order cone. We show that if the SOCMPCC is considered as an optimization problem with convex cone constraints, then Robinson’s constraint qualification … Read more

An O(1/k) Convergence Rate for the Variable Stepsize Bregman Operator Splitting Algorithm

An earlier paper proved the convergence of a variable stepsize Bregman operator splitting algorithm (BOSVS) for minimizing $\phi(Bu)+H(u)$ where $H$ and $\phi$ are convex functions, and $\phi$ is possibly nonsmooth. The algorithm was shown to be relatively efficient when applied to partially parallel magnetic resonance image reconstruction problems. In this paper, the convergence rate of … Read more

Decomposition algorithm for large-scale two-stage unit-commitment

Everyday, electricity generation companies submit a generation schedule to the grid operator for the coming day; computing an optimal schedule is called the unit-commitment problem. Generation companies can also occasionally submit changes to the schedule, that can be seen as intra-daily incomplete recourse actions. In this paper, we propose a two-stage formulation of unit-commitment, wherein … Read more

New results on subgradient methods for strongly convex optimization problems with a unified analysis

We develop subgradient- and gradient-based methods for minimizing strongly convex functions under a notion which generalizes the standard Euclidean strong convexity. We propose a unifying framework for subgradient methods which yields two kinds of methods, namely, the Proximal Gradient Method (PGM) and the Conditional Gradient Method (CGM), unifying several existing methods. The unifying framework provides … Read more

Convergence rates for forward-backward dynamical systems associated with strongly monotone inclusions

We investigate the convergence rates of the trajectories generated by implicit first and second order dynamical systems associated to the determination of the zeros of the sum of a maximally monotone operator and a monotone and Lipschitz continuous one in a real Hilbert space. We show that these trajectories strongly converge with exponential rate to … Read more

An optimal subgradient algorithm with subspace search for costly convex optimization problems

This paper presents an acceleration of the optimal subgradient algorithm OSGA \cite{NeuO} for solving convex optimization problems, where the objective function involves costly affine and cheap nonlinear terms. We combine OSGA with a multidimensional subspace search technique, which leads to low-dimensional problem that can be solved efficiently. Numerical results concerning some applications are reported. A … Read more

A forward-backward-forward differential equation and its asymptotic properties

In this paper, we approach the problem of finding the zeros of the sum of a maximally monotone operator and a monotone and Lipschitz continuous one in a real Hilbert space via an implicit forward-backward-forward dynamical system with nonconstant relaxation parameters and stepsizes of the resolvents. Besides proving existence and uniqueness of strong global solutions … Read more

The cone condition and nonsmoothness in linear generalized Nash games

We consider linear generalized Nash games and introduce the so-called cone condition which characterizes the smoothness of the Nikaido-Isoda function under weak assumptions. The latter mapping arises from a reformulation of the generalized Nash equilibrium problem as a possibly nonsmooth optimization problem. Other regularity conditions like LICQ or SMFC(Q) are only sufficient for smoothness, but … Read more

A weighted Mirror Descent algorithm for nonsmooth convex optimization problem

Large scale nonsmooth convex optimization is a common problem for a range of computational areas including machine learning and computer vision. Problems in these areas contain special domain structures and characteristics. Special treatment of such problem domains, exploiting their structures, can significantly improve the the computational burden. We present a weighted Mirror Descent method to … Read more