When is a gap function good for error bounds?

In this paper we survey some important classes of gap function for variational inequalities and also some recently introduced gap functions for generalized variational inequalities. A new gap function is proposed for generalized variational inequalities and error bound is developed. Error bounds are also developed for some particular classes of gap functions. In fact a … Read more

Error Forgetting of Bregman Iteration

This short article analyzes an interesting property of the Bregman iterative procedure, which is equivalent to the augmented Lagrangian method after a change of variable, for minimizing a convex piece-wise linear function J(x) subject to linear constraints Ax=b. The procedure obtains its solution by solving a sequence of unconstrained subproblems of minimizing J(x)+1/2||Ax-b^k||^2, where b^k … Read more

A barrier-based smoothing proximal point algorithm for NCPs over closed convex cones

We present a new barrier-based method of constructing smoothing approximations for the Euclidean projector onto closed convex cones. These smoothing approximations are used in a smoothing proximal point algorithm to solve monotone nonlinear complementarity problems (NCPs) over a convex cones via the normal map equation. The smoothing approximations allow for the solution of the smoothed … Read more

On the convergence of decomposition methods for multi-stage stochastic convex programs

We prove the almost-sure convergence of a class of sampling-based nested decomposition algorithms for multistage stochastic convex programs in which the stage costs are general convex functions of the decisions, and uncertainty is modelled by a scenario tree. As special cases, our results imply the almost-sure convergence of SDDP, CUPPS and DOASA when applied to … Read more

Extrapolation and Local Acceleration of an Iterative Process for Common Fixed Point Problems

We consider sequential iterative processes for the common fixed point problem of families of cutter operators on a Hilbert space. These are operators that have the property that, for any point x∈H, the hyperplane through Tx whose normal is x-Tx always “cuts” the space into two half-spaces one of which contains the point x while … Read more

On the Convergence Properties of Non-Euclidean Extragradient Methods for Variational Inequalities with Generalized Monotone Operators

In this paper, we study a class of generalized monotone variational inequality (GMVI) problems whose operators are not necessarily monotone (e.g., pseudo-monotone). We present non-Euclidean extragradient (N-EG) methods for computing an approximate strong solution of these problems, and demonstrate how their iteration complexities depend on the global Lipschitz or H\”{o}lder continuity properties for their operators … Read more

The Split Common Null Point Problem

We introduce and study the Split Common Null Point Problem (SCNPP) for set-valued maximal monotone mappings in Hilbert spaces. This problem generalizes our Split Variational Inequality Problem (SVIP) [Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numerical Algorithms 59 (2012), 301–323]. The SCNPP with only two set-valued mappings entails … Read more

Solution of monotone complementarity and general convex programming problems using modified potential reduction interior point method

We present a homogeneous algorithm equipped with a modified potential function for the monotone complementarity problem. We show that this potential function is reduced by at least a constant amount if a scaled Lipschitz condition is satis ed. A practical algorithm based on this potential function is implemented in a software package named iOptimize. The implementation … Read more

Linear System Identification via Atomic Norm Regularization

This paper proposes a new algorithm for linear system identification from noisy measurements. The proposed algorithm balances a data fidelity term with a norm induced by the set of single pole filters. We pose a convex optimization problem that approximately solves the atomic norm minimization problem and identifies the unknown system from noisy linear measurements. … Read more

Atomic norm denoising with applications to line spectral estimation

The sub-Nyquist estimation of line spectra is a classical problem in signal processing, but currently popular subspace-based techniques have few guarantees in the presence of noise and rely on a priori knowledge about system model order. Motivated by recent work on atomic norms in inverse problems, we propose a new approach to line spectral estimation … Read more