Symmetric tensor approximation hierarchies for the completely positive cone

In this paper we construct two approximation hierarchies for the completely positive cone based on symmetric tensors. We show that one hierarchy corresponds to dual cones of a known polyhedral approximation hierarchy for the copositive cone, and the other hierarchy corresponds to dual cones of a known semidefinite approximation hierarchy for the copositive cone. As … Read more

The Inexact Spectral Bundle Method for Convex Quadratic Semidefinite Programming

We present an inexact spectral bundle method for solving convex quadratic semidefinite optimization problems. This method is a first-order method, hence requires much less computational cost each iteration than second-order approaches such as interior-point methods. In each iteration of our method, we solve an eigenvalue minimization problem inexactly, and solve a small convex quadratic semidefinite … Read more

NONSMOOTH OPTIMIZATION OVER THE (WEAKLY OR PROPERLY) PARETO SET OF A LINEAR-QUADRATIC MULTI-OBJECTIVE CONTROL PROBLEM : EXPLICIT OPTIMALITY CONDITIONS

We present explicit optimality conditions for a nonsmooth functional defined over the (properly or weakly) Pareto set associated to a multiobjective linear-quadratic control problem. This problem is very difficult even in a finite dimensional setting, i.e. when, instead of a control problem, we deal with a mathematical programming problem. Amongst different applications, our problem may … Read more

On the acceleration of augmented Lagrangian method for linearly constrained optimization

The classical augmented Lagrangian method (ALM) plays a fundamental role in algorithmic development of constrained optimization. In this paper, we mainly show that Nesterov’s influential acceleration techniques can be applied to accelerate ALM, thus yielding an accelerated ALM whose iteration-complexity is O(1/k^2) for linearly constrained convex programming. As a by-product, we also show easily that … Read more

An Introduction to a Class of Matrix Cone Programming

In this paper, we define a class of linear conic programming (which we call matrix cone programming or MCP) involving the epigraphs of five commonly used matrix norms and the well studied symmetric cone. MCP has recently found many important applications, for example, in nuclear norm relaxations of affine rank minimization problems. In order to … Read more

Templates for Convex Cone Problems with Applications to Sparse Signal Recovery

This paper develops a general framework for solving a variety of convex cone problems that frequently arise in signal processing, machine learning, statistics, and other fi elds. The approach works as follows: first, determine a conic formulation of the problem; second, determine its dual; third, apply smoothing; and fourth, solve using an optimal first-order method. A … Read more

An accelerated inexact proximal point algorithm for convex minimization

The proximal point algorithm (PPA) is classical and popular in the community of Optimization. In practice, inexact PPAs which solves the involved proximal subproblems approximately subject to certain inexact criteria are truly implementable. In this paper, we first propose an inexact PPA with a new inexact criterion for solving convex minimization, and show that the … Read more

Convex duality in stochastic programming and mathematical finance

This paper proposes a general duality framework for the problem of minimizing a convex integral functional over a space of stochastic processes adapted to a given filtration. The framework unifies many well-known duality frameworks from operations research and mathematical finance. The unification allows the extension of some useful techniques from these two fields to a … Read more

An Effective Branch-and-Bound Algorithm for Convex Quadratic Integer Programming

We present a branch-and-bound algorithm for minimizing a convex quadratic objective function over integer variables subject to convex constraints. In a given node of the enumeration tree, corresponding to the fixing of a subset of the variables, a lower bound is given by the continuous minimum of the restricted objective function. We improve this bound … Read more

Interior Point Methods for Computing Optimal Designs

In this paper we study interior point (IP) methods for solving optimal design problems. In particular, we propose a primal IP method for solving the problems with general convex optimality criteria and establish its global convergence. In addition, we reformulate the problems with A-, D- and E-criterion into linear or log-determinant semidefinite programs (SDPs) and … Read more