Narrowing the difficulty gap for the Celis-Dennis-Tapia problem

We study the {\em Celis-Dennis-Tapia (CDT) problem}: minimize a non-convex quadratic function over the intersection of two ellipsoids. In contrast to the well-studied trust region problem where the feasible set is just one ellipsoid, the CDT problem is not yet fully understood. Our main objective in this paper is to narrow the difficulty gap that … Read more

GLODS: Global and Local Optimization using Direct Search

Locating and identifying points as global minimizers is, in general, a hard and time-consuming task. Difficulties increase when the derivatives of the functions defining the problem are not available for use. In this work, we propose a new class of methods suited for global derivative-free constrained optimization. Using direct search of directional type, the algorithm … Read more

Completely Positive Reformulations for Polynomial Optimization

Polynomial optimization encompasses a very rich class of problems in which both the objective and constraints can be written in terms of polynomials on the decision variables. There is a well stablished body of research on quadratic polynomial optimization problems based on reformulations of the original problem as a conic program over the cone of … Read more

Rounding on the standard simplex: regular grids for global optimization

Given a point on the standard simplex, we calculate a proximal point on the regular grid which is closest with respect to any norm in a large class, including all $\ell^p$-norms for $p\ge 1$. We show that the minimal $\ell^p$-distance to the regular grid on the standard simplex can exceed one, even for very fine … Read more

Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization

In this paper we analyze several new methods for solving nonconvex optimization problems with the objective function formed as a sum of two terms: one is nonconvex and smooth, and another is convex but simple and its structure is known. Further, we consider both cases: unconstrained and linearly constrained nonconvex problems. For optimization problems of … Read more

A note on Legendre-Fenchel conjugate of the product of two positive-definite quadratic forms

The Legendre-Fenchel conjugate of the product of two positive-definite quadratic forms was posted as an open question in the field of nonlinear analysis and optimization by Hiriart-Urruty [`Question 11′ in {\it SIAM Review} 49, 255-273, (2007)]. Under a convex assumption on the function, it was answered by Zhao [SIAM J. Matrix Analysis $\&$ Applications, 31(4), … Read more

Branch-and-Sandwich: A Deterministic Global Optimization Algorithm for Optimistic Bilevel Programming Problems

We present a global optimization algorithm, Branch-and-Sandwich, for optimistic bilevel programming problems which satisfy a regularity condition in the inner problem. The functions involved are assumed to be nonconvex and twice continuously differentiable. The proposed approach can be interpreted as the exploration of two solution spaces (corresponding to the inner and the outer problems) using … Read more

A Reliable Affine Relaxation Method for Global Optimization

An automatic method for constructing linear relaxations of constrained global optimization problems is proposed. Such a construction is based on affine and interval arithmetics and uses operator overloading. These linear programs have exactly the same numbers of variables and of inequality constraints as the given problems. Each equality constraint is replaced by two inequalities. This … Read more

A Generalization of a Theorem of Arrow, Barankin and Blackwell to a Nonconvex Case

The paper presents a generalization of a known density theorem of Arrow, Barankin, and Blackwell for properly efficient points defined as support points of sets with respect to monotonically increasing sublinear functions. This result is shown to hold for nonconvex sets of a reflexive Banach space partially ordered by a Bishop–Phelps cone. Citation Department of … Read more

On RIC bounds of Compressed Sensing Matrices for Approximating Sparse Solutions Using Lq Quasi Norms

This paper follows the recent discussion on the sparse solution recovery with quasi-norms Lq; q\in(0,1) when the sensing matrix possesses a Restricted Isometry Constant \delta_{2k} (RIC). Our key tool is an improvement on a version of “the converse of a generalized Cauchy-Schwarz inequality” extended to the setting of quasi-norm. We show that, if \delta_{2k}\le 1/2, … Read more