New SOCP relaxation and branching rule for bipartite bilinear programs

A bipartite bilinear program (BBP) is a quadratically constrained quadratic optimization problem where the variables can be partitioned into two sets such that fixing the variables in any one of the sets results in a linear program. We propose a new second order cone representable (SOCP) relaxation for BBP, which we show is stronger than … Read more

Discretization-based algorithms for generalized semi-infinite and bilevel programs with coupling equality constraints

Discretization-based algorithms are proposed for the global solution of mixed-integer nonlinear generalized semi-infinite (GSIP) and bilevel (BLP) programs with lower-level equality constraints coupling the lower and upper level. The algorithms are extensions, respectively, of the algorithm proposed by Mitsos and Tsoukalas (J Glob Optim 61(1):1–17, 2015. https://doi.org/10.1007/s10898-014-0146-6) and by Mitsos (J Glob Optim 47(4):557–582, 2010. … Read more

On the Complexity of Testing Attainment of the Optimal Value in Nonlinear Optimization

We prove that unless P=NP, there exists no polynomial time (or even pseudo-polynomial time) algorithm that can test whether the optimal value of a nonlinear optimization problem where the objective and constraints are given by low-degree polynomials is attained. If the degrees of these polynomials are fixed, our results along with previously-known “Frank-Wolfe type” theorems … Read more

Exact Semidefinite Formulations for a Class of (Random and Non-Random) Nonconvex Quadratic Programs

We study a class of quadratically constrained quadratic programs (QCQPs), called {\em diagonal QCQPs\/}, which contain no off-diagonal terms $x_j x_k$ for $j \ne k$, and we provide a sufficient condition on the problem data guaranteeing that the basic Shor semidefinite relaxation is exact. Our condition complements and refines those already present in the literature … Read more

Extended formulations for convex hulls of some bilinear functions

We consider the problem of characterizing the convex hull of the graph of a bilinear function $f$ on the $n$-dimensional unit cube $[0,1]^n$. Extended formulations for this convex hull are obtained by taking subsets of the facets of the Boolean Quadric Polytope (BQP). Extending existing results, we propose the systematic study of properties of $f$ … Read more

Run-and-Inspect Method for Nonconvex Optimization and Global Optimality Bounds for R-Local Minimizers

Many optimization algorithms converge to stationary points. When the underlying problem is nonconvex, they may get trapped at local minimizers and occasionally stagnate near saddle points. We propose the Run-and-Inspect Method, which adds an “inspect” phase to existing algorithms that helps escape from non-global stationary points. The inspection samples a set of points in a … Read more

Tighter McCormick Relaxations through Subgradient Propagation

Tight convex and concave relaxations are of high importance in the field of deterministic global optimization. We present a heuristic to tighten relaxations obtained by the McCormick technique. We use the McCormick subgradient propagation (Mitsos et al., SIAM J. Optim., 2009) to construct simple affine under- and overestimators of each factor of the original factorable … Read more

BASBL: Branch-And-Sandwich BiLevel solver I. Theoretical advances and algorithmic improvements

In this paper, we consider the global solution of bilevel programs involving nonconvex functions. We present algorithmic improvements and extensions to the recently proposed deterministic Branch-and-Sandwich algorithm (Kleniati and Adjiman, J. Glob. Opt. 60, 425–458, 2014), based on the theoretical results and heuristics. Choices in the way each step of the Branch-and-Sandwich algorithm is tackled, … Read more

The Gamut and Time Arrow of Automated Nurse Rostering

There is an undeniable global shortage of skillful nurses. This is a problem of high priority, which is correlated to workforce management issues. These issues can be palliated by increasing nurses’ satisfaction based on flexible rosters using automated nurse rostering. This paper in concerned with nurse rostering based on constraint programming by satisfying global constraints, … Read more

Facets of a mixed-integer bilinear covering set with bounds on variables

We derive a closed form description of the convex hull of mixed-integer bilinear covering set with bounds on the integer variables. This convex hull description is determined by considering some orthogonal disjunctive sets defined in a certain way. This description does not introduce any new variables, but consists of exponentially many inequalities. An extended formulation … Read more