A disjunctive cut strengthening technique for convex MINLP

Generating polyhedral outer approximations and solving mixed-integer linear relaxations remains one of the main approaches for solving convex mixed-integer nonlinear programming (MINLP) problems. There are several algorithms based on this concept, and the efficiency is greatly affected by the tightness of the outer approximation. In this paper, we present a new framework for strengthening cutting … Read more

An Exact Cutting Plane Method for hBcsubmodular Function Maximization

A natural and important generalization of submodularity—$k$-submodularity—applies to set functions with $k$ arguments and appears in a broad range of applications, such as infrastructure design, machine learning, and healthcare. In this paper, we study maximization problems with $k$-submodular objective functions. We propose valid linear inequalities, namely the $k$-submodular inequalities, for the hypograph of any $k$-submodular … Read more

Convexifying Multilinear Sets with Cardinality Constraints: Structural Properties, Nested Case and Extensions

The problem of minimizing a multilinear function of binary variables is a well-studied NP-hard problem. The set of solutions of the standard linearization of this problem is called the multilinear set. We study a cardinality constrained version of it with upper and lower bounds on the number of nonzero variables. We call the set of … Read more

A Separation Heuristic for 2-Partition Inequalities for the Clique Partitioning Problem

We consider the class of 2-partition inequalities for the clique partitioning problem associated with complete graphs. We propose a heuristic separation algorithm for the inequalities and evaluate its usefulness in a cutting-plane algorithm. Our computational experiments fall into two parts. In the first part, we compare the LP objective values obtained by the proposed separator … Read more

On a generalization of the Chvatal-Gomory closure

Many practical integer programming problems involve variables with one or two-sided bounds. Dunkel and Schulz (2012) considered a strengthened version of Chvatal-Gomory (CG) inequalities that use 0-1 bounds on variables, and showed that the set of points in a rational polytope that satisfy all these strengthened inequalities is a polytope. Recently, we generalized this result … Read more

The ratio-cut polytope and K-means clustering

We introduce the ratio-cut polytope defined as the convex hull of ratio-cut vectors corresponding to all partitions of $n$ points in $\R^m$ into at most $K$ clusters. This polytope is closely related to the convex hull of the feasible region of a number of clustering problems such as K-means clustering and spectral clustering. We study … Read more

Valid inequalities for quadratic optimisation with domain constraints

In 2013, Buchheim and Wiegele introduced a quadratic optimisation problem, in which the domain of each variable is a closed subset of the reals. This problem includes several other important problems as special cases. We study some convex sets and polyhedra associated with the problem, and derive several families of strong valid inequalities. We also … Read more

Closing the Gap in Linear Bilevel Optimization: A New Valid Primal-Dual Inequality

Linear bilevel optimization problems are often tackled by replacing the linear lower-level problem with its Karush–Kuhn–Tucker (KKT) conditions. The resulting single-level problem can be solved in a branch-and-bound fashion by branching on the complementarity constraints of the lower-level problem’s optimality conditions. While in mixed-integer single-level optimization branch- and-cut has proven to be a powerful extension … Read more

On the exact separation of cover inequalities of maximum depth

We investigate the problem of exactly separating cover inequalities of maximum depth and we develop a pseudo-polynomial-time algorithm for this purpose. Compared to the standard method based on the maximum violation, computational experiments carried out on knapsack and multi-dimensional knapsack instances show that, with a cutting-plane method based on the maximum-depth criterion, we can optimize … Read more

Submodular maximization of concave utility functions composed with a set-union operator with applications to maximal covering location problems

We study a family of discrete optimization problems asking for the maximization of the expected value of a concave, strictly increasing, and differentiable function composed with a set-union operator. The expected value is computed with respect to a set of coefficients taking values from a discrete set of scenarios. The function models the utility function … Read more