Recovering Dantzig-Wolfe Bounds by Cutting Planes

Dantzig-Wolfe (DW) decomposition is a well-known technique in mixed-integer programming (MIP) for decomposing and convexifying constraints to obtain potentially strong dual bounds. We investigate cutting planes that can be derived using the DW decomposition algorithm and show that these cuts can provide the same dual bounds as DW decomposition. More precisely, we generate one cut … Read more

A Simple Algorithm for Online Decision Making

Motivated by recent progress on online linear programming (OLP), we study the online decision making problem (ODMP) as a natural generalization of OLP. In ODMP, there exists a single decision maker who makes a series of decisions spread out over a total of \(T\) time stages. At each time stage, the decision maker makes a … Read more

Sparse multi-term disjunctive cuts for the epigraph of a function of binary variables

We propose a new method for separating valid inequalities for the epigraph of a function of binary variables. The proposed inequalities are disjunctive cuts defined by disjunctive terms obtained by enumerating a subset $I$ of the binary variables. We show that by restricting the support of the cut to the same set of variables $I$, … Read more

Multilinear Sets with Two Monomials and Cardinality Constraints

Binary polynomial optimization is equivalent to the problem of minimizing a linear function over the intersection of the multilinear set with a polyhedron. Many families of valid inequalities for the multilinear set are available in the literature, though giving a polyhedral characterization of the convex hull is not tractable in general as binary polynomial optimization … Read more

On Generating Lagrangian Cuts for Two-stage Stochastic Integer Programs

We investigate new methods for generating Lagrangian cuts to solve two-stage stochastic integer programs. Lagrangian cuts can be added to a Benders reformulation, and are derived from solving single scenario integer programming subproblems identical to those used in the nonanticipative Lagrangian dual of a stochastic integer program. While Lagrangian cuts have the potential to significantly … Read more

Convexifying Multilinear Sets with Cardinality Constraints: Structural Properties, Nested Case and Extensions

The problem of minimizing a multilinear function of binary variables is a well-studied NP-hard problem. The set of solutions of the standard linearization of this problem is called the multilinear set. We study a cardinality constrained version of it with upper and lower bounds on the number of nonzero variables. We call the set of … Read more

On sample average approximation for two-stage stochastic programs without relatively complete recourse

We investigate sample average approximation (SAA) for two-stage stochastic programs without relatively complete recourse, i.e., for problems in which there are first-stage feasible solutions that are not guaranteed to have a feasible recourse action. As a feasibility measure of the SAA solution, we consider the “recourse likelihood”, which is the probability that the solution has … Read more